
J
H
E
P
0
3
(
2
0
0
8
)
0
6
9

Published by Institute of Physics Publishing for SISSA

Received: October 15, 2007

Accepted: March 11, 2008

Published: March 28, 2008

Matrix models, geometric engineering and elliptic

genera

Timothy Hollowood

Department of Physics, Swansea University,

Singleton Park, Swansea, SA2 8PP, U.K.

E-mail: t.hollowood@swan.ac.uk

Amer Iqbal and Cumrun Vafa

Jefferson Physical Laboratory, Department of Physics,

Harvard University,

17 Oxford Street, Cambridge, MA 02138, U.S.A.

E-mail: iqbal@math.washington.edu, vafa@physics.harvard.edu

Abstract: We compute the prepotential of N = 2 supersymmetric gauge theories in four

dimensions obtained by toroidal compactifications of gauge theories from 6 dimensions, as

a function of Kähler and complex moduli of T2. We use three different methods to obtain

this: matrix models, geometric engineering and instanton calculus. Matrix model approach

involves summing up planar diagrams of an associated gauge theory on T2. Geometric

engineering involves considering F-theory on elliptic threefolds, and using topological vertex

to sum up worldsheet instantons. Instanton calculus involves computation of elliptic genera

of instanton moduli spaces on R4. We study the compactifications of N = 2∗ theory in

detail and establish equivalence of all these three approaches in this case. As a byproduct

we geometrically engineer theories with massive adjoint fields. As one application, we show

that the moduli space of mass deformed M5-branes wrapped on T2 combines the Kähler

and complex moduli of T2 and the mass parameter into the period matrix of a genus 2

curve.

Keywords: Solitons Monopoles and Instantons, Topological Strings, Matrix Models,

Supersymmetric gauge theory.

mailto:t.hollowood@swan.ac.uk
mailto:iqbal@math.washington.edu
mailto:vafa@physics.harvard.edu
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
3
(
2
0
0
8
)
0
6
9

Contents

1. Introduction 2

2. The matrix model approach 4

2.1 Engineering the curve from the matrix model 4

2.2 Extracting the Seiberg-Witten curve 11

3. Geometric engineering of gauge theories 15

3.1 N = 4 D = 4 15

3.2 N = 2, D = 4 pure SU(N) theory 16

3.3 N = 2, SU(N) with Nf = 2N 21

3.4 N = 2, SU(N) with adjoint hypermultiplet 27

3.5 ÂN−1 theories 33

4. Topological string amplitudes and BPS degeneracies 33

4.1 Second quantized strings and A-model partition function 37

4.2 Non-compact toric threefolds and the topological vertex 38

5. Partition functions from the topological vertex 44

5.1 U(N) with massive adjoint 44

5.1.1 N = 1 44

5.1.2 N = 2 51

5.2 U(N) with Nf = 2N 54

5.2.1 N = 1 54

5.2.2 N = 2 59

6. Instanton moduli spaces and partition functions 63

6.1 Calculation of 5D partition functions 65

6.2 Calculation of 6D partition function 66

6.3 Extracting the curves from instantons 68

6.3.1 The theory with an adjoint 69

6.3.2 The theory with fundamentals 72

7. 6D SYM and the 5-brane 76

– 1 –



J
H
E
P
0
3
(
2
0
0
8
)
0
6
9

1. Introduction

String theory has been rather successful in providing insights into the dynamics of super-

symmetric gauge theories in 4 dimensions. In particular essentially all questions involving

vacuum geometry can be settled exactly for a large class of gauge theories; all the F-terms

are exactly computable. Topological strings on Calabi-Yau geometries have played a key

role in this regard. In particular consideration of type IIA (and topological A-model)

strings on local Calabi-Yau threefolds leads to exact results, via geometric engineering,

to questions involving a large class of N = 2 supersymmetric gauge theories in 4 dimen-

sions [1, 2]. Also consideration of type IIB (and topological B-model) geometries with

wrapped and spacetime filling branes leads to exact results for N = 1 supersymmetric

gauge theories [3, 4], which is also equivalent to the matrix model realization of a pertur-

bative window into non-perturbative dynamics of these theories. This approach can also

be used to address questions involving N = 2 supersymmetric theories, as this is a special

case of N = 1 supersymmetric gauge theories. There has been another approach devel-

oped recently [5] for answering F-term questions involving N = 2 supersymmetric gauge

theories. This involves the development of an instanton calculus, and can be viewed as an

efficient method to do the relevant integration over the instanton moduli space.

One can also ask questions about the dynamics of higher dimensional supersymmetric

gauge theories, which will be the main focus of this paper. Moreover we will focus mainly

on the overlap of these approaches that relate to theories with 8 supercharges. All these

three approaches can be extended to higher dimensions and more specifically to dimensions

5 and 6. In the geometric engineering approach to go from 4 → 5 → 6 one has to consider

the chain of duality between type IIA on Calabi-Yau X with M-theory on X × S1 and

F-theory on X×T2. The latter duality requires ellipticity of X [6 – 8] and this gets related

to the fact that only special 6D gauge theories with 8 supercharges are anomaly free. In

the Matrix model approach to go from 4 → 5 → 6 one considers associated gauge theories

in 0, 1, 2 dimensions respectively, corresponding to geometry of point, S1, T2 [9]. In the

instanton calculus approach one replaces (for the case of N = 2∗) the measure from 1 to

arithmetic genus χ and then to elliptic genus, in going from 4 to 5 and then 6 dimensions

(the last point will be explained in this paper).

We will restrict to a special class of gauge theories, namely those which do exist as

anomaly free theories in 6 dimensions. In particular we will focus mainly on U(N) coupled

with an adjoint matter, known as N = 2∗; we also discuss as a further example how these

generalize to the theory with 2N fundamental hypermultiplets in the terminology of N = 2

supersymmetric theories in 4 dimensions.

In the course of implementing these ideas we solve a number of related problems: we

find a nice way to summarize the integrality predictions [10, 11] of topological string free

energy F in terms of the integrality of the partition function Z = expF . We also use the

more refined information of instanton calculus [5] to shed light on the meaning of it in

terms of curve counting for toric Calabi-Yau. We apply the topological vertex to double

elliptically fibered Calabi-Yau (the possibility of doing this was noted in [12]) and in doing

so we end up geometrically engineering theories with adjoint matter (N = 2∗) on the one
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Figure 1: F-term computations for supersymmetric gauge theories from the view point of matrix

models, instanton calculus and geometric engineering, in 4, 5 and 6 dimensions. The vertical and

horizontal line segments on the external line of the web shown in the figure indicate gluing of those

lines.

hand, and lifting theories from 5-dimensional M-theory, to 6 dimensional F-theory (with

elliptic 3-folds) on the other. Moreover we show that, for the simplest gauge theory with

gauge group U(1), the relevant local model involves combining the Kähler class of the two

elliptic fibrations as the elliptic moduli of the “two tori” of a genus 2 curve. In relating

these to the instanton calculus approach we end up studying the (equivariant) elliptic

genus on the moduli space of instantons on R4. For the case of U(1) gauge theory this gets

related to the elliptic genus for symmetric products of R4. Elliptic genera of symmetric

products have been studied [13] and it turns out that there, the double ellipticity (coming

from the elliptic genus on the one hand, and the parameter counting the number of copies

of the symmetric product on the other) and the appearance of genus 2 curve was already

apparent. The study of elliptic genera of symmetric products of instanton moduli spaces

in [13] was motivated by the question of 5D black hole entropy [14] (see also [15]). As for

the matrix model approach, going from 4 → 5 → 6 involves changing the spectral plane

from C to C∗ and then to T2. In the case of the N = 2∗ theory with gauge group U(1), a

genus 2 curve arises naturally as well.

The organization of this paper is as follows. In section 2 we apply the matrix model

techniques to study aspects of gauge theories in 5 and 6 dimensions. In section 3 we review

basic aspects of geometric engineering in 4, 5 and 6 dimensions, including theories with

adjoint matter. In section 4 we review topological A-model strings, and the integrality

structure of its partition function. We also discuss how to use topological vertex to com-

pute these amplitudes. In section 5 we apply topological vertex techniques to calculate
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prepotentials for gauge theories in 4, 5 and 6 dimensions. As examples we take N = 2∗

gauge theories as well as U(N) theories with 2N fundamentals in these dimensions (for

explicit example we take the cases of N = 1, 2). In section 6 we review aspects of instanton

calculus and apply it to the theories under consideration. We explain how elliptic genus

of moduli space of instantons arises in studying gauge theory questions in 6 dimensions.

In section 7 we relate the N = 2∗ theory lifted to 6 dimensions to the deformed theory of

the M5-brane, or NS5-brane wrapped on T2, but deformed with a mass parameter. We

discuss the implication of the appearance of the genus 2 curve from this perspective.

2. The matrix model approach

In this section we discuss how we can obtain results for prepotential of N = 2 super-

symmetric theories in 4 dimensions, obtained from compactification of gauge theories in 6

dimensions on T2 using matrix model techniques [16] adapted to higher dimensional gauge

theories [9]. The idea is to consider deformations of N = 2 theory by an N = 1 preserv-

ing superpotential. This superpotential is just a convenience which allows one to probe

a particular point on the Coulomb branch and at the end its strength may be taken to

zero [17]. Thus we start with a gauge theory on T2 which encodes the superpotential of the

corresponding N = 1 theory, as in [9] and compute the glueball superpotential by studying

the planar diagrams of that theory. We then extremize it to find the superpotential and the

U(1) gauge theory coupling constants which are encoded by the geometry (period matrix)

of the resolvent curve. Since in this paper we would be mostly interested in the N = 2

aspects of the theory, we will mainly keep track of the geometry of the curve because it is a

feature that survives the limit when the superpotential is turned off and so pertains to the

N = 2 theory [17]. We will consider one main example with gauge group U(N), to illus-

trate these ideas: N = 2∗ (i.e. the N = 2 theory with a massive adjoint hypermultiplet).

Note that the choice of the gauge theory should be such that it is anomaly free for the 6

dimensional chiral theory and these two classes are consistent with that. These techniques

can be easily generalized to many other examples, which we leave to the interested reader.

2.1 Engineering the curve from the matrix model

In this section, we show how the curve for the six-dimensional theory can be engineered

from a matrix model applying the techniques developed in [9, 17]. More precisely, we will

consider the six-dimensional U(N) gauge theory with N = (1, 1) supersymmetry compact-

ified on a torus T2 defined by

T2 =

{
y
∣∣ y ∼ y +

β

2Imρ
(p+ qρ) , p, q ∈ Z

}
, (2.1)

where β is a length scale and ρ is the complex structure of the torus. The effective theory

in four dimensions will be the N = 4 gauge theory. However, we can also incorporate a

mass for an adjoint hypermultiplet in the compactification. If T2 has finite volume then the

effective theory in four dimensions with be generalization of the N = 2∗ theory involving

all the Kaluza-Klein modes of the fields on the torus.
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However, if we break this effective four-dimensional to N = 1 by adding an arbitrary

superpotential for the one massless adjoint chiral multiplet then we can use the higher-

dimensional generalization of the holomorphic matrix integral approach, described in [9],

to find the effective superpotential. In other words, we need to generalize [18], which

considered the five-dimensional lift of the N = 1∗ theory, to the six-dimensional lift. Cor-

respondingly, we have to lift the matrix quantum mechanics to a two-dimensional matrix

field theory, i.e. a two-dimensional gauge theory.

From the point-of-view of the effective four-dimensional theory there are 3 adjoint

chiral fields Φi, i = 1, 2, 3. One of the fields, say Φ3, is now interpreted as the holomorphic

component of the six-dimensional gauge field along the compactification torus. According

to the general procedure of [9], after breaking to N = 1, the superpotential of the effective

four-dimensional theory is determined by a two-dimensional gauge theory involving the

fields Φi(y, ȳ) and defined by the partition function

Z =

∫ 3∏

i=1

[dΦi] exp

(
−g−1

s

∫
d2yW (Φi)

)
, (2.2)

where gs is a coupling constant. The action of the matrix model is a generalization of the

one that describes the N = 1∗ deformation of the four dimensional theory [19, 20]:

W (Φi) = Tr
(
Φ1DȳΦ2 +mΦ1Φ2 + V (Φ3)

)
(2.3)

where the covariant derivative is DȳΦ2 = ∂ȳΦ2 + [Φ3,Φ2]. If we want to engineer the

Seiberg-Witten curve of the six-dimensional theory on a torus, then the potential V (Φ3)

has to be chosen to be suitably generic in order that its critical points allow one to track

across the Coulomb branch of the N = 2∗. At the end, the strength of V (Φ3) can then

be taken to zero and results regarding the N = 2∗ theory are obtained. We will make a

suitable choice for V (Φ3) later.

In order to complete the description of the theory we need to specify the measure for

the integrals in (2.2). Part of the matrix model approach involves interpreting the integrals

in a holomorphic way. To be concrete, we can subject the matrices to particular reality

conditions. In the present case, we take Φ†
1 = Φ2, or equivalently Φ1+Φ2 and i(Φ1−Φ2) are

Hermitian. In particular, the measure for the latter combination of fields is the appropriate

measure for Hermitian fields. The gauge field component Φ3(y, ȳ) is treated in a somewhat

different manner since it is the anti-holomorphic component of a gauge field on T2. First

of all, local gauge transformations on the torus can be used to transform Φ3 into a constant

diagonal matrix:

UDȳU
−1 = diag

(
φ1, . . . , φN

)
. (2.4)

This fixes all of the gauge group apart from permutations of the diagonal elements and

large gauge transformations on the torus T2 in the abelian U(1)N subgroup. These latter

group elements are

Ui = exp

(
2iπ

β

(
(pi + ρqi)ȳ − (pi + qiρ̄)y

))
, pi, qi ∈ Z (2.5)
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for i = 1 . . . , N . These transformations have the effect of shifting

φi → φi +
2πi

β
(pi + qiρ) . (2.6)

In other words, the φi are naturally defined on the dual to the compactification torus which

we denote T̃2:

T̃2 =

{
x
∣∣ x ∼ x+

2πi

β
(p+ qρ) , p, q ∈ Z

}
. (2.7)

This torus also has a complex structure ρ.

Following the logic of [21, 77, 78], we integrate out the fields Φ1(y, ȳ) and Φ2(y, ȳ) since

they appear Gaussian in (2.2) and gauge fix Φ3 in the way described above. We end up

with a (zero-dimensional) matrix integral involving the quantities φi:

Z =

∫ N∏

i=1

dφi
Det′(Dȳ)

Det(Dȳ +m)
exp

(
−g−1

s v

N∑

i=1

V (φi)

)
, (2.8)

where v is the volume of T2. The determinant in the numerator is the gauge-fixing Jacobian

while the one in the denominator arises from integrating out Φ1,2. For consistency, we now

see that the probe potential V (φ) must respect the double-periodicity of the torus T̃2 (2.6):

V (x) = V

(
x+

2πi

β
(p+ qρ)

)
, p, q ∈ Z . (2.9)

It is straightforward to evaluate the ratio of determinants in (2.8). To start with,

consider the simplified quantity

Det(∂ȳ + C) , (2.10)

where C is a constant. Take the eigenvalue equation

(
∂ȳ + C

)
ψ(y, ȳ) = λψ(y, ȳ) . (2.11)

The eigenvectors and eigenvalues can be found explicitly:

ψ(y, ȳ) = exp

(
2iπ

β

(
(p + qρ)ȳ − (p+ qρ̄)y

))
p, q ∈ Z , (2.12)

and

λ = C +
2πi

β
(p+ qρ) . (2.13)

Therefore the determinant, up to an infinite factor which will cancel between the denomi-

nator and numerator in (2.8), is

Det(∂ȳ + C) ∼

∏

p,q

(
C +

2πi

β
(p + qρ)

)
. (2.14)

Using the identities

sinx = x

∞∏

n=1

(
1 − x2

π2n2

)
, θ1(z|τ) = q1/4eiz

∞∏

n=1

(
1 − q2n

) (
1 − q2n−2e−2iz

) (
1 − q2nz2iz

)

(2.15)

– 6 –



J
H
E
P
0
3
(
2
0
0
8
)
0
6
9

we can write the ratio of the determinants in (2.8) in terms of elliptic theta functions:

Det′(Dȳ)

Det(Dȳ +m)
∼

∏
i6=j θ1

(
β
2i(φi − φj)

∣∣ρ
)

∏
ij θ1

(
β
2i(φi − φj +m)

∣∣ρ
) , (2.16)

up to a φi independent multiplicative factor.

Now we are ready to perform a large-N saddle-point evaluation of the remaining matrix

model around a critical point. In order to engineer the Seiberg-Witten curve for this theory,

V (x) must have at least N critical points. Given this, one expands around a critical point

where there is one eigenvalue φi in a subset of N of the critical points. We will make a

convenient choice for V (x) later. As usual in the matrix model we replace N → N̂ and

introduce a degeneracy N̂i at each of the N critical points inhabited by a field theory

eigenvalue. We then take the limit Ni → ∞, gs → 0 with Si = gsN̂i fixed. In the large-N̂

limit, the eigenvalues φi form a continuum and condense onto N open contours on the dual

torus T̃2. We define these contour by specifying the end-points:

Ci = [ai, bi] . (2.17)

We also define the union

C =

N⋃

i=1

Ci . (2.18)

The configuration is described by the density of eigenvalues ̺(x), a function which has

support only along the N contours, and which we normalize according to
∫

C
̺(x) dx = 1 . (2.19)

The saddle-point equation is most conveniently formulated after defining the resolvent

function

ω(x) =

∫

C
dy ̺(y)∂x log θ1

(
β

2i
(x− y)

∣∣ρ
)
. (2.20)

This function is a multi-valued function on the torus T̃2,

ω(x+ 2πi/β) = ω(x) , ω2(x+ 2πiρ/β) = ω(x) − β−1 , (2.21)

except cuts along the N contours Ci. The matrix model spectral density ρ(x) is then equal

to the discontinuity across the cut

ω(x+ ǫ) − ω(x− ǫ) = 2πi̺(x) , x ∈ C . (2.22)

In this, and following equations, ǫ is a suitable infinitesimal such that x ± ǫ lies infinites-

imally above and below the cut at x. The saddle-point equation expresses the condition

of zero force on a test eigenvalue in the presence of the large-N distribution of eigenvalues

along the cut:

vV ′(x)

S
= ω(x+ ǫ) + ω(x− ǫ) − ω(x+m) − ω(x−m) , x ∈ C . (2.23)

– 7 –
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Figure 2: The cut torus on which G(x) is defined for the case N = 3. Each pairs of cuts is

identified. The cycles Ai and Bi, i = 1, . . . , N are associated to each pair of cuts and AN+1 and

BN+1 are the cycles of the torus T̃2.

This equation can be re-written in terms of the function

G(x) = U(x) + iS
(
ω
(
x+

m

2

)
− ω

(
x− m

2

))
, (2.24)

where U(x) is determined by the finite-difference equation

U
(
x+

m

2

)
− U

(
x− m

2

)
= ivV ′(x) . (2.25)

From its definition, one can see that G(x) is now single-valued on T̃2 with N pairs of cuts

C±
i =

[
ai ±

m

2
, bi ±

m

2

]
. (2.26)

This is illustrated in figure 2. In terms of G(x), the matrix model saddle-point equa-

tion (2.23) is

G
(
x+

m

2
± ǫ
)

= G
(
x− m

2
∓ ǫ
)

x ∈ C . (2.27)

These equations can be viewed as conditions which glue the top (bottom) of C+
i to the

bottom (top) of its partner C−
i . This generates a handle as illustrated in figure 3. In other

words G(x) naturally defines a genus N + 1 Riemann surface Σmm defined as the torus T̃2

with N pairs of cuts C±
i which are glued together in pairs to create N additional handles.

It appears that the resulting Riemann surface has 2N moduli provided by the positions

{ai, bi} of the ends of the cuts Ci. In fact, let us call M the moduli space of surfaces defined

in this way with (complex) dimension dimM = 2N .1 However, the requirement that a

meromorphic function G(x) exists on the surface with a suitable polar divisor actually

1We count all dimensions as complex.
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Figure 3: The top (bottom) of C+

j is identified with the bottom (top) of C−

j . The figure shows

how this generates a handle in the surface on which G(x) is defined.

means that the actual moduli space of the matrix model curve is only an N (complex)

dimensional subspace Mmm ⊂ M. To see this notice that V ′(x) has by hypothesis at least

N zeros and hence a polar divisor of order at least N on the torus T̃2. This can be arranged,

for example, by taking U(x) to have a pole of order N + 2 at a single point x0 on the torus

T̃2. It follows that V ′(x) will have a polar divisor of order 2N + 4 and hence have 2N + 4

zeros. The reason for this choice is purely based on convenience as will emerge shortly. We

can write our choice for U(x) explicitly as

U(x) =

∏N+2
l=1 θ1

(
β
2i(x− cl)|ρ

)

θ1

(
β
2i(x− x0)|ρ

)N+2
,

N+2∑

l=1

cl = (N + 2)x0 . (2.28)

Note that this function is single-valued on T̃2. With the above choice, G(x) must also have

a pole of order N + 2 at x0 on Σ. For generic x0, the Riemann-Roch Theorem, guarantees

that G(x) will be unique up to an overall scaling. Hence, matching the singular part of

G(x) with U(x) at x0 leads to N conditions on the moduli of the surface. Consequently,

the dimension of the moduli space of matrix model curves Mmm is N as claimed. Of course,

the same counting of moduli will also work for other choices of U(x) for which V ′(x) has

at least N zeros, but our choice was a convenient one.

The N moduli of the surface are encoded in the quantities Sj = gsN̂j which can be

expressed as the following contour integrals:

Sj = S

∫

Ci

dx ̺(x) = − S

2πi

∮

Aj

dxω(x) = − 1

2π

∮

Aj

G(x)dx , j = 1, . . . , N , (2.29)

where Aj encircles the cut C+
j as in figure 2.
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The other ingredient required to determine the glueball superpotential of the six-

dimensional QFT compactified on the torus is the variation of the genus zero free energy

F0 of the matrix model in transporting a test eigenvalue from infinity to one of the original

N cuts Cj . This is obtained by integrating the force on a test eigenvalue, which can be

expressed in terms of the function G(x) as

−i
(
G
(
x+

m

2

)
−G

(
x− m

2

))
, (2.30)

from infinity to a point on the cut Cj. This can be written as an integral of G(x) itself along

a contour starting at a point on the lower cut C−
j going off to infinity and then back to a

point on the upper cut C+
j . This can be deformed into the contour running from a point

on C−
j to the image point on C+

j related by a shift in x by m. Since the 1-form G(x)dx is

single-valued on Σmm this integral is in fact around the closed cycle Bj on Σmm conjugate

to the cycle Aj defined above: see figure 2. Hence,

∂F0

∂Sj
= −i

∮

Bj

G(x)dx , j = 1, . . . , N . (2.31)

According to the matrix model approach [3, 21, 16, 9], the effective glueball superpo-

tential in this vacuum where the degeneracies are Ni = 1 is given by

Weff(Si) =
N∑

j=1

(
∂F0

∂Sj
− 2πiτSj

)
, (2.32)

where τ is the usual complexified coupling of the supersymmetric gauge theory in four

dimensions.

A critical point of Weff(Sj) corresponds to

N∑

j=1

∂2F0

∂Sk∂Sj
= 2πiτ k = 1, . . . , N . (2.33)

This equation can be written in a more suggestive way by noticing that ωj =

− 1
2π

∂
∂Sj

G(x)dx j = 1, . . . , N are a subset of the holomorphic 1-forms on Σmm. The rea-

son is that the singular part of G(x)dx at x0 depends only on U(x) and so is manifestly

independent of the moduli {Sj}. Furthermore, the ωj are normalized so that
∮

Aj

ωk = δjk . (2.34)

Hence
∂2F0

∂Sk∂Sj
= 2πi

∮

Bj

ωk = 2πiΠjk , (2.35)

where Πjk are elements of the period matrix of Σmm excluding the last row and column.

Consequently the critical point equations are

N∑

j=1

Πjk = τ k = 1, . . . , N . (2.36)

– 10 –
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Given that Mmm is N -dimensional, these N conditions completely fix the geometry of the

Riemann surface Σmm in terms of the parameters of the probe potential V (x).

The remaining elements of the period matrix Π are fixed in the following way. Notice

that the remaining holomorphic 1-form ωN+1 is identified with βdx/(2πi) since

∮

Aj

dx = 0 , j = 1, . . . , N ,

∮

AN+1

dx =
2πi

β
. (2.37)

Hence

ΠN+1,j = Πj,N+1 =

∮

Bj

ωN+1 =
β

2πi

∫ x+ m
2

x−m
2

dx =
βm

2πi
, j = 1, . . . , N , (2.38)

while

ΠN+1,N+1 =

∮

BN+1

ωN+1 =
β

2πi

∫ 2πiρ/β

0
dx = ρ . (2.39)

Hence, the period matrix of Σmm at a critical point is

Π =




Π11 · · · Π1N
βm
2πi

...
. . .

...
...

ΠN1 · · · ΠNN
βm
2πi

βm
2πi · · · βm

2πi ρ



,

N∑

j=1

Πjk = τ . (2.40)

2.2 Extracting the Seiberg-Witten curve

We now show how to extract the Seiberg-Witten curve for the compactified six-dimensional

theory Σ. The idea is that this curve at some point in its moduli space is simply identified

with the matrix model curve Σmm. By changing the potential we can move around in the

moduli space of the curve Σ. In other words, the Seiberg-Witten curves Σ are the curves

in M subject to the N conditions (2.36).

The crucial observation is that the curve Σ admits the two multi-valued functions.

Firstly, the critical point equations (2.33) imply that z defined by

z(P ) =

∫ P

P0

N∑

j=1

ωN , (2.41)

for an arbitrary point P0, is a multi-valued function on Σmm with

Aj : z → z + 1 , Bj : z → z + τ , j = 1, . . . , N

AN+1 : z → z , BN+1 : z → z +
Nβm

2πi
.

(2.42)

In addition to this we also have the multi-valued function x

x(P ) =
β

2πi

∫ P

P ′
0

ωN+1 , (2.43)
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Figure 4: On the left, the surface Σ realized as the cut x-torus T̃2. The cuts in each of the N

pairs are separated by m and are glued together as in figure 3. On the right, an impression of the

surface realized as N handles on the x-torus.

defined with respect to some other, possibly different, base point P ′
0, with

Aj : x→ x , Bj : x→ x+m , j = 1, . . . , N

AN+1 : x→ x+
2πi

β
, BN+1 : x→ x+

2πi

β
ρ .

(2.44)

From these monodromy properties it follows that Σ is holomorphically embedded in a

slanted 4-torus T4. Introducing complex coordinates for C2

z1 = z , z2 =
βN

2πi
x , (2.45)

then we can write

T4 =

{
zi ∈ C2

∣∣∣ zi ∼ zi +

4∑

α=1

Ωiαpα , pα ∈ Z

}
, (2.46)

where the 2 × 4-dimensional period matrix is

Ω =

(
1 0 τ Nβm

2πi

0 N Nβm
2πi Nρ

)
. (2.47)

In fact, the form of the period matrix implies that T4 is an abelian surface, or 2-dimensional

abelian variety [22, 23].

We can picture the curve in two ways. Firstly, as already presented in the matrix

model, as a torus in the x-plane with periods (2πi/β, 2πiρ/β) and with N pairs of cuts

across which x jumps by ±m whose edges are identified to create a handle as in figure 3.

This is illustrated in figure 4. The second representation consists of N copies of a torus

in the z-plane with periods (1, τ) joined by N − 1 branch cuts. On the face of it, such a

surface would have genus N but on one of the sheets there is a pair of cuts across which
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Figure 5: On the left, the surface Σ realized as N copies of the z-torus connected by N −1 branch

cuts. On one of the sheets there is an additional pairs of cuts separated by Nβm/(2πi) which are

glued together as in figure 3. On the right, is an impression of the surface illustrating the N copies

of the z-torus plumbed together along with the additional handle on one of the sheets.

z jumps by ±Nβm/(2πi) whose edges are identified to create an extra handle. This is

illustrated in figure 5.

Since T4 is an abelian surface, it turns out that there is an explicit realization of the

curve in terms of generalized theta-functions associated to T4 [22]. In our conventions,

these are defined as

Θ

[
δ

ǫ

]
(Z|Π) =

∑

m∈Zg

exp
(
πi(m+ δ) · Π · (m+ δ) + 2πi(Z + ǫ) · (m+ δ)

)
. (2.48)

In this definition, Z, δ, ǫ and m are g-vectors and Π is a g× g matrix. In the present case,

g = 2 and the curve can then be written as2

N−1∑

j=0

AjΘ

[
0 j

N

0 0

](
z

Nβx

2πi

∣∣∣ τ Nβm
2πi

Nβm
2πi Nρ

)
= 0 . (2.49)

The coefficients Aj are moduli of the curve. Since the overall scale of the Aj is unimportant,

the moduli are actually valued in PN−1. There are two other moduli corresponding to

moving the curve as a whole in T4. In all there are N + 1 moduli which matches the

number of moduli of the matrix model curve when we include P0 the arbitrary fixed point

in the definition of z in (2.41). It can be shown that Σ is in the homology class dual to

Ndy1 ∧ dy3 + dy2 ∧ dy4 , (2.50)

where yα are real coordinates, 0 ≤ yα < 1, with zi =
∑4

α=1 Ωiαyα. This is interpreted as

meaning that the curve is wrapped N times around the z torus and once around the x

2For more details, see [24].
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torus, as in clear from figures 4 and 5. Similar curves which wrap k times around the x

torus describe the U(N)k quiver theories in six dimensions. It is interesting to note that the

construction of our curve is identical to the curve that appears in [25] describing instantons

in non-commutative gauge theory on T4. The relation between the two problems can be

made by compactifying our effective four-dimensional theory down to 3 dimensions, in other

words the six-dimensional theory is on a 3-torus [26]. This is precisely the philosophy of [27]

which formulates the problem of finding the vacuum states of the theory when broken to

N = 1 in terms of equilibrium configurations of an integrable system [28]. This line of

thinking leads to the question of what integrable system lies behind the compactified six-

dimensional theory which generalizes the N -body elliptic Calogero-Moser system, for the

four-dimensional theory, and the N -body elliptic Ruijsenaars-Schneider system, for the

compactified five-dimensional theory? It turns out that the resulting system is not the

“doubly elliptic system” of [29, 30], rather it is an N -body system where the momenta and

positions (qi, pi) as complex 2-vectors lie in the 4-torus T4 [24].

The form of the curve (2.49) can be re-caste in the following way which makes the

reduction to five and four dimensions more immediate [24]:

∞∑

n=0

1

n!

( m
2πi

)n
∂n

z θ1
(
πz
∣∣τ
)
∂n

xH(x) = 0 , (2.51)

where

H(x) =

N∏

j=1

θ1

(
β

2i
(x− ζi)

∣∣ρ
)
. (2.52)

Here, ζi are N of the N + 1 moduli and the remaining one corresponds to shifting z by a

constant. To go from the six to the five-dimensional curve one takes ρ→ i∞ in which case

H(x) →
N∏

j=1

sinh
β

2
(x− ζi) , (2.53)

and from the five to the four-dimensional curve one takes β → 0 giving rise to

H(x) →
N∏

j=1

(x− ζi) . (2.54)

The curve of the four-dimension theory is identical to the curve described by Donagi and

Witten [31]. It is well-known that this is the spectral curve of the N -body elliptic Calogero-

Moser integrable system [32, 33]. The curve of the five-dimensional theory can be shown

to be the spectral curve of the Ruijsenaars-Schneider integrable system as predicted by

Nekrasov [34]. The relation between this integrable system and the matrix quantum me-

chanical system has already been established in [18].

The form of the curve (2.51) is very natural from Type IIA/M Theory elliptic brane

construction [35]. Using the representation

θ1(z|τ) =
∑

n∈Z

(−1)n−1/2eiπτ(n+1/2)2ei(2n+1)z (2.55)
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(2.51) can be written

∑

n∈Z

(−1)n−1/2eiπτ(n+1/2)2ei(2n+1)πzH(x+m(n+ 1/2)) = 0 . (2.56)

For the four-dimensional case where H(x) =
∏N

i=1(x − ζi) we recognize z and x with the

spacetime coordinates as follows

z = (x10 + ix6)/R10 , x = x4 + ix5 , (2.57)

where R10 is the size of the M-theory circle. The parameters ζi are nothing but the

positions of the N D4-branes and the curve takes account of the periodicity in the x6

direction by including an infinite set images each shifted by an integer multiple of m

which identifies m as the hypermultiplet mass. The five and six-dimensional curves result

from compactifying x = x4 + ix5 on a circle and torus T̃2, respectively. The replacement

H4D(x) → H5D(x) → H6D(x) takes account of the compactification by including all the

images of the D4-branes.

To summarize, the Seiberg-Witten curve of the six-dimensional N = (1, 1) theory

compactified on a torus is a Riemann surface embedded holomorphic in the abelian surface.

In the M-theory formulation, the M5-brane is wrapped on this Riemann surface.

3. Geometric engineering of gauge theories

Calabi-Yau manifolds have played an important role in the study of supersymmetric gauge

theories in various dimensions. The geometry of CY3-folds has been the source of important

insights for gauge theories. The geometries we will consider in this paper give rise to

gauge theories with U(N) gauge group and fundamental or adjoint hypermultiplets via

geometric engineering as we will explain later. In this section we will review the geometric

engineering of four [1, 2], five [36 – 39] and six [7, 8] dimensional SYM gauge theories with

eight supercharges from CY3-folds. The basic idea is to use F-theory compactification on

elliptic threefolds times T2, and its equivalence to M-theory on the 3-fold times an S1

and type IIA on the 3-fold. Moreover one has to choose special threefolds which admit

appropriate loci of AN−1 singularities, to engineer U(N) gauge theories with some matter

content encoded by the geometry. We will also solve a puzzle in the geometric engineering

approach by showing how theories with massive adjoint matter can be engineered. In order

to motivate this it is convenient to also review the (p, q) 5-brane web construction of some

of these theories [40] and how to realize adjoint matter in the brane constructions [35] and

reading off the equivalent CY geometry from the resulting webs [39].

3.1 N = 4 D = 4

Let us begin by considering the well known case of pure U(N) gauge theory with N = 4

supersymmetry. Type IIA superstrings in the background of AN−1 singularity inside a K3

realizes U(N) gauge theory with 16 supercharges in 6 dimensions. The D2 branes wrapped

over the 2-cycles of the blown up geometry realize the charged fields of the vector multiplet.
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Type IIB on the AN−1 singularity leads to tensionless strings and is equivalent to N copies

of NS5-branes of IIA [41]. Now, consider compactifying type IIA strings in the background

of AN−1 to 4 dimensions. Depending on how the AN−1 geometry is fibered over the extra

2 dimensions we get various kinds of gauge theories.

If we consider a trivial fibration on T2 we get N = 4 supersymmetric theory in 4

dimensions. The gauge coupling constant in 4 dimensions is given by the volume of T2.

Note that this is also equivalent to type IIB on the same geometry by doing a T-duality

on T2 exchanging Kähler and complex structures on T2. The Montonen-Olive duality is

realized in this context by the modular group SL(2,Z) acting on the complex structure of

T2. Perhaps the most well known way to realize this theory is on a set of N coincident

D3-branes in flat space. By a chain of dualities this configuration of D3-branes is related

to the set of type IIA NS5-branes wrapped on a T2.

The prepotential of this 4D theory gets only classical contributions which, in terms of

geometry of AN−1, is proportional to the triple intersection numbers of the 4-cycles, which

include 2-cycles of AN−1 times T2. To see this note that H2(AN−1,Z) is isomorphic to

the root lattice of AN−1 Lie algebra. The holomorphic curves in AN−1 2-fold are in one to

one correspondence with positive roots of AN−1 algebra. Let us denote by ai the moduli

of the Coulomb branch such that
∑N

i=1 ai = 0 and by φi = ai − ai+1 the area of the curve

Fi corresponding to the ith simple root, 1 ≤ i ≤ N − 1. The intersection number of Fi is

given by the Cartan matrix Aij i.e. ,

Fi · Fi = −2 , Fi · Fi+1 = 1 , i = 1, . . . , N − 2 . (3.1)

Then the prepotential is given by

F =
τ

2
F · F , F =

∑

i,j

φi(A
−1)ijFj . (3.2)

Thus the geometry of the 2-fold encodes the prepotential is a simple way. This is also holds

for N = 2 4D theories: the classical contribution to the prepotential is given by classical

intersection numbers of the CY geometry. In the case of N = 4 the classical result is exact.

3.2 N = 2, D = 4 pure SU(N) theory

After this brief review of N = 4 theory let us consider N = 2 4D pure SU(N) theory.

The engineering of an N = 2 SU(N) gauge theory requires a singularity of AN−1 type to

produce the appropriate gauge symmetry and another two dimensional space over which

AN−1 is fibered to get four non-compact dimensions. However, the 2D space cannot be

arbitrary since the total space has to be CY3-fold. In the case of N = 4 this was T2 and

the CY3-fold was a product AN−1 × T2 space. To break supersymmetry down to N = 2

(eight supercharges) the surface should have no holomorphic one forms and therefore has

to be a P1. However, the total geometry cannot be a product of AN−1 and P1 anymore

since it is not Calabi-Yau threefold. To obtain a CY3-fold the AN−1 is fibered non-trivially

over the P1. The details of the N = 2 theory obtained by type IIA compactification on

such a CY3-fold depends on the way AN−1 is fibered over the P1. In the 4D field theory
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Figure 6: Realization of pure N = 2 D=4 theory on the worldvolume of N NS5-branes wrapped

on a P1 (inside T ∗P1) (a) and its dual description in terms of AN−1 fibered CY3-fold (b).

limit, which we will describe later, all such 3-folds give the same theory after appropriate

identification of parameters.

This theory can also be realized using NS5-branes similar to the case of N = 4. In this

case the NS5-branes are wrapped on P1 inside T ∗P1 (O(−2) bundle over P1, (figure 6)).

The four dimensional field theory limit is obtained by taking the string scale to infinity.

By the relations of the base and fiber Kähler parameters to the gauge coupling and W-boson

masses, these parameters must be scaled as [1]

Qb := e−Tb =
(βΛ

2

)2N
, QFi := e−TFi = e−β(ai−ai+1) i = 1, . . . , N − 1 , (3.3)

where Tb denotes the volume of the base P1 and TFi denote the volumes of the fiber P1’s.

Λ in the above denotes the quantum scale in four dimensions, ai are the moduli of the

Coulomb branch and the parameter β is introduced such that the four dimensional field

theory limit corresponds to β → 0.

The N = 2 prepotential has both 1-loop perturbative and non-perturbative (instanton)

contributions,

F = Fclassical + F1-loop +

∞∑

k=1

ck(ai)Λ
2Nk . (3.4)

In the geometric engineering picture this is obtained from the genus zero topological

string amplitude of the CY3-fold on which type IIA string theory is compactified. By

considering (3.3), it then becomes clear that the k-th gauge instanton contributions stem

from worldsheet instantons that wrap the base P1 of our geometries k-times. As we will

discuss later the instanton contribution are encoded in the classical geometry of type
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NS5−brane NS5−brane

D4−branes

Figure 7: The brane configuration giving rise to four dimensional pure N = 2 U(N) theory.

IIB on the mirror Calabi-Yau, which in turn is equivalent to NS5-branes compactified on

a Riemann surface Σ [42]. This can also be viewed, from the M-theory perspective as

M5-brane with worldvolume of Σ. In the next section we will review the brane construction

that directly leads to the M5-brane.

Brane description. The D-brane construction of this theory is well known [35] and

involves D4-branes and NS5-branes. Consider type IIA string theory with two NS5-branes

and N D4-branes. The NS5-branes are extended in the x0,1,2,3,4,5 directions, being located

at equal values in x7,8,9 and separated in the x6 direction by a distance L. The D4-

branes span the x0,1,2,3 and x6 directions, being finite in the x6 direction in which they are

suspended between the NS5-branes as shown in figure 7. When the D4-branes are coincident

the effective worldvolume theory is D = 4 N = 2 SU(N) gauge theory with coupling

constant given by 1/L. The picture of the geometry shown above is only approximate and

is a good description for small gs since in this limit we can ignore the effect of D4-brane

ending on the NS5-brane. In general the NS5-brane will get curved due to the D4-brane.

In this limit it is more useful to lift the above configuration to M-theory and so that the

above configuration of D4-brane and NS5-branes becomes a single M5-brane wrapped on

a Riemann surface (the Seiberg-Witten curve) of genus N − 1 given by

y2 =
N∏

i=1

(x− φi)
2 − 4

(
Λ

2

)2N

. (3.5)

Five dimensional. As mentioned before in the field theory limit (β → 0) all CY3-

folds which are given by AN−1 fibration over P1 give the same four dimensional field

theory. However, it is possible to distinguish between these different CY3-folds if we instead

consider the five dimensional SU(N) gauge theory obtained via M-theory compactification

on the same Calabi-Yau times an S1. The parameter β gets identified with the perimeter of

S1. Recall that in this case these different CY3-folds are distinguished by the Chern-Simons

coefficient, k, of the five dimensional theory i.e. , the coefficient of the term

∫

R5

TrA ∧ F ∧ F , (3.6)
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(k+1,1)

(−1,−1) (N−k−1,−1)

(−N+1,1)

(0,0) (−1,0)

(0, N )

(1,N−k)

a) b)

Figure 8: (p, q) 5-brane web (a), and the corresponding toric diagram (b), which realizes five

dimensional pure N = 1 theory with Chern-Simons coefficient k.

where A is the gauge field and F is the corresponding field strength. The cubic part of

the prepotential of the five dimensional SU(N) gauge theory with Chern-Simons coefficient

k, in the limit β → ∞, is given by the triple intersection numbers of the corresponding

CY3-fold [38],

Fcubic
5D =

1

6



∑

i,j

φi(A
−1)ijSj




3

=
k

6

∑

i

a3
i +

1

6

∑

i>j

|ai − aj |3 . (3.7)

Si are the various non-trivial 4-cycles in the CY3-fold. The Chern-Simons coefficient takes

values from −N to +N . The geometry of the corresponding CY3-fold can be seen easily

from the toric diagram or the corresponding dual web of (p, q) 5-branes of type IIB [40, 39]

(figure 8). Recall that for non-compact toric threefolds the five dimensional theory obtained

via M-theory compactification is dual to the five dimensional theory living on a (p, q) 5-

brane web in type IIB. This is a consequence of the duality between M-theory on T2

and type IIB on a circle. Since the non-compact toric CY3-folds have a T2 fibration

which degenerates on a planar tri-valent graph therefore using the M-theory/IIB duality

adiabatically one can replace the degeneration locus with 5-branes. The (p, q) charge of the

5-brane is determined by the degenerate cycle of the T2. Holomorphicity of the CY3-fold

implies that the orientation of the 5-brane is correlated with its charge i.e. , (p, q) 5-brane

is oriented in the direction (p, q) (for type IIB coupling constant τ = i). This web diagram

can be obtained directly from the toric diagram as its dual.

As an example consider the case of O(−1) ⊕ O(−1) over P1. This is a non-compact

toric 3-fold with one Kähler parameter, the size of the P1, which we will denote as r. The

linear sigma model description [43] of this geometry is given by

|Φ1|2 + |Φ2|2 − |Φ3|2 − |Φ4|2 = r , (3.8)

(Φ1,Φ2,Φ3,Φ4) ∼
(
Φ1e

iα,Φ2e
iα,Φ3e

−iαΦ4e
−iα
)
.
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|Φ 3 |2

|Φ 1|2

|Φ4 |2
a) b)

P1

P
2

P3

P4

Figure 9: The linear sigma model description of the base of the deformed conifold in R3
+ (a) and

the corresponding web in in R2 (b).

Figure 10: The web diagram of various CY3-fold geometries which realize the five dimensional

pure U(3) theory.

The base of this geometry parameterized by (|Φ1|2, |Φ3|2, |Φ4|2) is shown in figure 9(a).

The base is the three dimensional convex region bounded by the planes P1,2,3,4.These

2 dimensional planes P1, P2, P3, P4 are given by Φ4 = 0,Φ2 = 0,Φ3 = 0 and Φ1 = 0

respectively. We can project this geometry onto a two dimensional plane and since the

locus where the various planes intersect each other has a degenerate T2 we see that in

the two dimensional plane the (p, q) cycle of the T2 fibration degenerate over line which is

projection of the intersection of two planes and is oriented in the (p, q) direction. This is

the corresponding web diagram and is shown in figure 9(b).

The various geometries which give rise to SU(3) five dimensional gauge theory are

shown in figure 10(a).

For a more concrete connection with the four dimensional gauge theory consider com-

pactifying the five dimensional theory on a circle of radius β. Then for small β it is more

useful to lift the web of 5-branes to M-theory on T2 (with the area of T2 equal to 1/β) such

that the web becomes a single M5-brane wrapped on a Riemann surface Σ. The Riemann

surface Σ is embedded in R2 ×T2 where R2 is the plane in which the original 5-brane web

lived and T2 is dual to the circle of type IIB. The Riemann surface Σ is given by just thicken-

ing the original graph of the web and its equation can be read easily from the toric diagram,

Y + α
XN−k

Y
+ PN (X) = 0 , X, Y ∈ C∗ , (3.9)

where PN (X) is a polynomial of degree N . This Riemann surface actually is the non-trivial

– 20 –



J
H
E
P
0
3
(
2
0
0
8
)
0
6
9

part of the CY3-fold which is mirror to the CY3-fold which geometrically engineers the

five dimensional theory via M-theory compactification. To see this note that the mirror of

the CY3-fold [42, 44, 45] with toric diagram given by figure 8(b) is

F (X,Y ) := Y + e−tB
XN−k

Y
+ PN (X) = uv , X, Y ∈ C∗ , u, v ∈ C . (3.10)

The Calabi-Yau can be viewed as C∗ fibration over the X,Y plane where the circle

fibration degenerates over the Riemann Surface F (X,Y ) = 0. The periods of this

CY3-fold reduce to integrals of a 1-form over 1-cycles of Σ. The complex structure

parameters of the mirror CY, the complex coefficients in the above equation, are related

to the Kähler parameters tB (size of the base P1) and tFi (size of the i-th fiber P1). The

geometry of the degeneration of the circle fibration maps this to the geometry of type

IIA NS5-brane wrapped on the same Riemann surface [42], which can then be lifted up to

an M-theory M5-brane. Thus we see that the M5-brane wrapped on the mirror Riemann

surface gives the compactified five dimensional theory. This Riemann surface becomes the

Seiberg-Witten curve if we redefine the variables X,Y suitably in the field theory limit.

For this note that we can write the equation of the mirror Riemann surface as

y2 =
N∏

i=1

(X − eφi)2 − 4e−tB XN−k . (3.11)

Now define

X = eβx , eφi = eβ(ai−ai+1) , e−tB =

(
βΛ

2

)2N

. (3.12)

then in the limit β → 0 (4D limit) the equation of the mirror Riemann surface becomes

the equation for the SW curve,

y2 =

N∏

i=1

(x− ai,i+1)
2 − 4

(
Λ

2

)2N

. (3.13)

Note that since X was a C∗ variable, x takes value on a cylinder of radius 1/β. Thus in

the limit β → 0, x becomes a C variable. Also the integer k has disappeared from the

equation reflecting the fact that in this limit the geometries becomes equivalent. From

eq. (3.12) it is clear that in the limit of four dimensional theory the base P1 grows and

the fiber P1 shrink with a scaling given by (3.3).

3.3 N = 2, SU(N) with Nf = 2N

Once pure SU(N) gauge theory has been engineered it is relatively simple to modify the

CY3-fold geometry to include hypermultiplets in the fundamental representation. A fun-

damental hypermultiplet of mass m appears in the gauge theory if we blowup the CY3-fold

of the pure SU(N) gauge theory such that the mass of the hypermultiplet m is proportional

to the area of the blown up curve.
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Figure 11: a) O(−1) ⊕O(−1) bundle over P1, b) blow up of O(−1) ⊕O(−1) bundle over P1 at

two points.

Let us begin by considering the case of 5-dimensional U(1) theory with Nf = 2. The

geometry giving rise to pure U(1) theory is that of resolved conifold i.e. , the total space

of O(−1) ⊕ O(−1) bundle over P1. The size of the P1, t, is proportional to the length

of the internal line as shown in figure 11(a) and is inversely proportional to the gauge

theory coupling constant. To introduce fundamental hypermultiplets we need to blow up

this geometry at two points as shown in figure 11(b). In this case the 4 dimensional field

theory limit is given by

e−ta = e−βma , q = e−β , β → 0 , (3.14)

where m1,2 is the mass of the two hypermultiplets in the 4 dimensional field theory and

t1,2 is the area of the blown up rational curves. If we do not take this limit we obtain five

dimensional theory compactified on a circle of size β.

Generalization to 5-dimensional U(N) with matter is straightforward. All we have

to do is blow up the geometry giving rise to pure U(N) theory at Nf points as shown

in figure 12(b) for the case Nf = 2N . The corresponding (p, q) 5-brane web in type IIB

is shown in figure 12(a) and consists of intersecting D5-branes and NS5-branes. This is

the case when the hypermultiplets have zero mass. To introduce non-zero mass one has

to resolve the intersection locus of D5-brane and the NS5-brane. In terms of CY3-fold

geometry each exceptional curve generated by the blow up gives rise to a fundamental

hypermultiplet such that the mass of the hypermultiplet is proportional to the area of the

corresponding curve. The limit of 4 dimensional field theory is given by

e−Tb =

(
βΛ

2

)2N−Nf

, e−TFi = e−β(ai−ai+1) , e−ta = e−βma , a = 1, . . . , Nf , β → 0

where ta is the area of the ath exceptional curve generated by the blow up.

From the toric diagram, figure 12(b), it is clear that there are 4N distinct triangulations

of the diagram. Different triangulations of the toric diagram give geometries related to each

other by flop transitions. In the web description this corresponds to two possible resolutions

into tri-valent graph at each of the 2N points where the (1, 0) line meets the (0, 1) line. In

the gauge theory language this is given by the choice of the sign of the mass term. Thus

for zero size of the blown up P1 the geometry is unique. The case of SU(2) is illustrated in

figure 13. The various geometries which give rise to SU(2) theory (figure 13(a)) are related

to the same geometry (figure 13(b)) by flop transitions once four points have been blown
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(0,0) (1,0)

(1,1)

(1,2)

(1,N)

a) b) c)

Figure 12: a) The web diagram of the geometry relevant for five dimensional U(N) theory with

Nf = 2N , b) the corresponding toric diagram and c) the flop transition reflecting the choice of the

triangulation of the toric diagram.

a) b) c)

Figure 13: a) The web diagrams of the CY3-fold which realize pure 5D U(2) theory, b) its blow up

at four points for a particular choice of the triangulation and c) the unique web diagram obtained

by blowing up four points with zero area.

up. In all these case the classical part of the prepotential is given by the triple intersection

numbers of the corresponding CY3-fold.

6D theory. In the previous section we saw that 4D theory can be obtained as a limit

of the 5D theory. A natural question that arises here is whether the 5D theory can be

obtained as some limit of a compactified 6D theory. One way of answering this is to

consider F-theory on X × T2. But for this to work the CY3-fold X must be an elliptic

fibration with a section. This is related to the fact that the 6D theory must be anomaly

free and therefore must have a very specific matter content. For the case of U(N) theory

with Nf fundamental hypermultiplets it requires that Nf = 2N . The elliptic 3-folds which

give rise to these theories where constructed in [46].

To construct the non-compact 3-folds with elliptic fibration relevant for U(N) theory

with Nf = 2N let us first consider the simple geometry of the deformed conifold given by

x1x2 − x3x4 = ε . (3.15)

We can write the above as

x1x2 = z , x3x4 = z − ε . (3.16)
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z=ε

z−plane

a)

D5−brane

NS5−brane

b)

Figure 14: a) The deformed conifold as the double C∗ fibration over the z-plane and b) the

corresponding 5-brane web configuration

Then we see that the deformed conifold is given by two C∗ fibrations over the complex

z-plane as shown in figure 14(a). The S3 in the geometry, formed by the two circles in the

C∗ fibration and the line segment joining the points z = 0 and z = ε, has size given by ε.

In terms of the (p, q) 5-brane web the ε 6= 0 deformation is given by separating D5-brane

and the NS5-brane from each other by a length ε as shown in figure 14(b).

Now given this picture of the geometry in terms of two C∗ fibration it is easy to see

that one can get an elliptically fibered CY3-fold by compactifying one of the C∗ fibers to

a T2, as shown in figure 15(a), such that

x1x2 = z , (3.17)

y2 = x3 + f(z, ε)x+ g(z, ε) .

The second equation above defines the elliptic fibration over the z-plane which degenerates

at z = ε. The corresponding type IIB configuration of 5-branes is now such that the NS5-

brane is wrapped on a circle and for ε = 0 the D5-brane intersects the circle as shown in

figure 15(b). The circle on which the NS5-brane is wrapped is exactly the circle created by

the compactification of the C∗ fiber to T2 and its size is related to the Kähler class of the

compactified T2. Now given this web description we can consider two NS5-branes wrapped

on the circle but separated in along the D5-brane. In this case it is easy to see that when

the radius of the circle goes to infinity we get 5-dimensional U(1) theory with Nf = 2

living on the D5-brane and intersecting the two NS5-branes. Therefore the six dimensional

theory compactified on a circle is given by a (p, q) 5-brane web which consists of a D5-brane

and two NS5-branes wrapped on a circle such that the D5-brane intersects the circle at

a point and the NS5-brane are separated along the D5-brane as shown in figure 16. The

distance between the two NS5-branes, along the D5-brane, is inversely proportional to the

coupling constant of the 6 dimensional gauge theory.

Generalization to geometries giving rise to U(N) theory with Nf = 2N is straightfor-

ward. Instead of single D5-brane we consider N D5-branes intersecting the circle on which
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z=ε

z−plane

NS5−brane

D5−brane

Figure 15: a) The partial compactification of the deformed conifold geometry by replacing one of

the C∗ with a T2 and b) the corresponding 5-brane web description.

a) b)

Figure 16: a) The 5-brane web description of the partial compactification of the resolved conifold

blown up at two points and b) the geometry as an elliptic fibration which degenerates on the base

P1.

two NS5-branes are wrapped as shown in figure 17.

In the limit that the size of the circle goes to infinity we get back the (p, q) web

configuration giving rise to 5 dimensional U(N) theory with Nf = 2N .

The exact form of the curve can be extracted from the web diagrams using the rules

of [40] or that of local mirror symmetry applied to toric threefolds [2, 44, 45]. To apply

this method to the 6D theories we have to take account of the periodicity of the web by

including all its images under the periodic shift. For the N = 1 the web diagram with

all its images is shown in figure 18. On the right is the associated grid diagram. The

associated curve can be written F (X,Y ) = 0, where F (X,Y ) is the sum of monomials, one

for each vertex of the grid diagram. If a vertex is at (k, l) then the monomial is simply

AklX
kY l. The Akl is a potential modulus of the curve; however, there are conditions that

must be satisfied that restrict them. These conditions arise as follows. Consider a link on

the grid that joins (k, l) with (u, v). Each such link is uniquely associated to a link on the

web to which it is orthogonal. Suppose the link of the web is described by the equation
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Figure 17: The 5-brane web description of the compactified 6D U(N) theory with Nf = 2N .

Figure 18: The web diagram for the 6DN = 1 andNf = 2 theory where periodicity is implemented

by including an infinite set of images. On the right is the associated grid diagram.

py = qx+ α, then the orthogonality condition is

(k, l) − (u, v) = (−q, p) . (3.18)

For each such link, we then have the constraint

py = qx+ α : Akl = eβαAuv . (3.19)

In the present case, we have monomials AklX
kY l, l ∈ Z and k = 0, 1, 2. Applying the rules,

we find that all the coefficients are fixed in terms of the parameters a1,2,3 in figure 18, up

to an unimportant overall scaling and a choice of origin:

A0,l = eβLl(l−1) , A1,l = A0,l e
a1(1−l) , A2,l = A0,l e

a1(2−l)+a2+a3(1−l) , (3.20)

where L is the period of the web in the vertical direction. This parameter is related to ρ via

L =
2πiρ

β
. (3.21)
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We will identify the parameters a1 and a3 in terms of the masses,

a1 = −βm1 , a3 = βm2 . (3.22)

This leaves one remaining degree-of-freedom in a2 which corresponds to the bare coupling.

So after a rescaling of Y the curve becomes

F (X,Y ) =
∞∑

l=−∞
e2πil(l−1)ρY l

(
e−βm1(l−1/2) +X + ea2−β(m1+m2)/2e−βm2(l−1/2)X2

)
= 0 .

(3.23)

Identifying Y = eβx and X = e2πiz, and with some re-scalings of X and Y , the curve

becomes

c

4
θ1

(
β

2i
(x−m1)|ρ

)
+Xθ1

(
β

2i
x|ρ
)

+X2θ1

(
β

2i
(x−m2)|ρ

)
= 0 ,

c

4
= ea2−β(m1+m2)/2 .

(3.24)

Defining y = 2X + θ1(
β
2ix)/θ1(

β
2i (x−m2), the curve becomes

y2 = θ1

(
β

2i
x|ρ
)2

− c θ1

(
β

2i
(x−m1)|ρ

)
θ1

(
β

2i
(x−m2)|ρ

)
. (3.25)

The constant c = c(a2) represents the freedom to change the bare coupling of the theory.

For N > 1, using an identical approach we find a curve that can be written

y2 =

N∏

i=1

θ1

(
β

2i
(x− ζi)

∣∣ρ
)2

− c

2N∏

f=1

θ1

(
β

2i
(x−mf )

∣∣ρ
)
. (3.26)

where the mf are the masses and the ζi are the moduli of the Coulomb branch. In the four-

dimensional limit, this reduces to the well-known hyper-elliptic geometry. We note that our

curve is very simply related to the spectral curve of an XYZ spin chain suggested in [61].

3.4 N = 2, SU(N) with adjoint hypermultiplet

In this section we will review the brane configurations and the CY3-fold geometry that real-

izes the N = 2 U(N) gauge theory with an adjoint hypermultiplet in 4, 5 and 6 dimensions.

Brane construction. The basic type IIB setup which realizes the 5-dimensional theory

is similar to the elliptic models which realize 4 dimensional theory with adjoint hypermul-

tiplet [35]. The only difference is that instead of D4-branes we have D5-branes in this case.

There is a single NS5-brane and the D5-branes are wrapped on a circle: the NS5-brane

is extended in the x0,1,2,3,4,5 direction. The D5-branes span the x0,1,2,3,4 and x6 direction.

The direction x6 is taken to be compact so that the D5-branes wrap the circle and in-

tersect the NS5-brane which is a point on the circle (figure 21(a)). On the 5-dimensional

non-compact part of the D5-brane worldvolume there is an N = 1 (8 supercharge) U(N)

gauge theory with a massless adjoint i.e. , it has N = 2 (16 supercharge) supersymmetry

reflected by the fact that since there is a single NS5-5brane it can be moved away from

the circle leaving behind N D5-branes wrapped on a circle. The theory on such a set of
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N

x 6

NS5−brane

1

2

N

D5−branes

Figure 19: Elliptic models involving 5-branes which realize 5D U(N) theory with a massless

adjoint.

a) b) c)

m

Figure 20: a) Elliptic model realizing U(1) theory with massless adjoint, b) adjoint can be made

massive by deforming the brane configuration and c) the same web diagram drawn with identifica-

tions.

N D5-branes is N = 2 U(N) gauge theory. Turning on the mass of the adjoint breaks

the supersymmetry down to N = 1 and therefore the corresponding branes configuration

must be such that NS5-brane cannot be moved away from the circle. This is achieved as

in [35] by changing the geometry so that as one goes around the x6 circle x5 shifts by m.3

Obviously this corresponds to resolving the intersection of D5-branes and the NS5-branes

into a tri-valent web of (p, q) 5-branes in the x5,6 plane as shown in figure 20(b,c). In this

case the separation distance is equal to the mass of the adjoint. Once the adjoint acquires

non-zero mass we can Higgs the gauge group by separating the D5-branes from each other

(figure 21). The (p, q) 5-brane web given above also defines the CY3-fold geometry which in

this case has a elliptic fibration since the web is compactified on a circle. By compactifying

one of the direction perpendicular to the web, say x4, on a circle of size β we can take a

limit in which we get the 4 dimensional field theory:

e−A(T2) = e2πiτ , q := e−gs = e−β , e−t = e−βm , β → 0 , (3.27)

where A(T2) is the area of the compactified T2 in the CY3-fold geometry, t is the area of

the exceptional curves in the geometry and τ is the coupling of the four-dimensional theory.

3In the five-dimensional theory m is real.
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Figure 21: Brane configuration which realizes U(N) theory with adjoint mass.

z=ε

z−plane

a) b)

D5−brane

NS5−brane

Figure 22: a) The elliptically fibered CY which gives U(1) theory with massive adjoint and b) the

corresponding 5-brane web diagram.

To describe the 6 dimensional geometry we start with the U(1) case. The corresponding

5-dimensional geometry was discussed in the last section and is given by compactifying one

of the two C∗ fibers so that we have a C∗ × T2 fibration over the z-plane. The C∗ fiber

degenerates at z = 0 and the elliptic fibration degenerates at z = ε. The two fibrations

together define an S3 in the geometry. Shrinking this S3 produces a singularity which when

resolved gives the picture dual to the picture of D5-brane and NS5-brane intersecting and

then deformed into a tri-valent web of (p, q) 5-branes. The (1, 1) 5-brane introduced by this

resolution is dual to the exceptional curve produced by the resolution of singularity. The

6 dimensional compactified theory can be obtained by compactifying both the NS5-brane

and the D5-brane on two different circles so that the plane of the web is a 2-torus. This

corresponds to compactifying both C∗ fibrations as shown in figure 22(a). Recall that the

compactified 5-dimensional theories on the (p, q) 5-brane webs can be lifted to M-theory

where the theory lives on an M5-brane with worldvolume R4 ×Σ. The Riemann surface Σ
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Figure 23: a) The genus 2 curve which describes the geometry of the 6D theory with an adjoint

for N = 1, b) when the mass m → 0, the genus 2 curve degenerates into 2 elliptic curves with

complex structures τ and ρ.

is obtained from the (p, q) 5-brane web by “thickening” the lines and is embedded in the

4-dimensional space x4,5,6,10, where x10 is the M-theory dimension. This is locally of the

form S1 × R× T2
τ , where T2

τ is the torus with complex structure τ in the x6,10 directions

and S1 is the T-dual of the original x4 circle, i.e. now having size β−1. Globally one must

take account of the mass so that as one goes around the x6-cycle of T2
τ , x

5 shifts by m.

In the six dimensional case, where both directions along the web are now periodic, we can

lift the (p, q) 5-brane web to obtain an M5-brane wrapped on a Riemann surface Σ. In

this case Σ can also be obtained from the web by thickening it but it now is embedded in

a slanted 4-torus in the x4,5,6,10 space. This 4-torus is identified with the abelian surface

T4 in eq. (2.46).4 It is easy to see that Σ is a genus two curve which degenerates into two

elliptic curves when the mass of the adjoint goes to zero (figure 23). This is precisely as

one would predict from the analysis in section 2.

The exact form for the curve can be obtained from the web diagram using the rules

established in [40] or local mirror symmetry applied to toric Calabi-Yau [2, 44, 45] that

we summarized at the end of section 3.3. As in section 3.3, in order to apply them to

webs with periodicities we employ the method of images, although now we have double

periodicity. We will only consider the N = 1 case in any detail but it should be clear

to reader how to extend the method to N > 1. When we include all the images, the

web tessellates the plane as illustrated in figure 24. This figure also shows the associated

grid diagram. The associated curve can be written F (X,Y ) = 0, where F (X,Y ) is the

sum of monomials AklX
kY l, k, l ∈ Z, one for each vertex of the grid diagram. The Akl

are potential moduli which can be fixed using the connection with the web diagram as in

section 3.3, that fixes them, up to an overall scaling. Using the rule (3.19), we find the

following recursion relation for the elements:

Ak+1,l = eβ(Lhk+ml)Akl , Ak,l+1 = eβ(Lvl+mk)Akl , (3.28)

where Lh and Lv are the periods of the web in the vertical and horizontal direction. These

parameters are related to ρ and τ via

Lv =
2πiρ

β
, Lh =

2πiτ

β
, (3.29)

at least for ρ and τ purely imaginary. However, the results extend holomorphically to

arbitrary values of ρ and τ . Solving (3.28), we find

Akl = e2πik(k−1)τ+2πil(l−1)ρ+klβm (3.30)

4In this context m can be taken to be complex.
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Figure 24: The web diagram for the 6D N = 1 theory with adjoint including all the images under

the two periodic directions. On the right is the associated grid diagram.

up to an unimportant overall factor. Notice that once the rule (3.19) has been imposed

there are no remaining moduli apart from the overall position of the web: just as one

expects for the N = 1 curve. So the curve becomes

F (X,Y ) =

∞∑

kl=−∞
e2πik(k−1)τ+2πil(l−1)ρ+klβmXkY l = 0 , (3.31)

which, after identifying X = e2πiz and Y = eβx, and after suitable re-scalings, is simply

Θ

[
0 0

0 0

](
z

βx

2πi

∣∣∣ τ
βm
2πi

βm
2πi ρ

)
= 0 . (3.32)

This is precisely the N = 1 version of (2.49). Notice that the form of the curve ensures

that under the identification

X → Xe2iπτ Y → Y em

Y → Y e2iπρ X → Xem

F (X,Y ) = 0 is invariant, since F (X,Y ) → XaY bF (X,Y ) for some a, b (note that

X,Y 6= 0).

Note that from the above construction of the curve from the toric diagram we have a

cyclic symmetry between the parameters. To see this consider the transformation

X 7→ X , Y 7→ XY , (3.33)

which has the effect of changing the basic grid in the toric diagram. The curve F (X,Y )

after this transformation becomes

F (X,XY ) = Θ

[
0 0

0 0

](
z + τ

βx

2πi

∣∣∣ τ βm
2πi − τ

βm
2πi − τ τ + ρ− βm

2πi

)
= 0 . (3.34)
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The period matrix is given by

Π =

(
βm
2πi + τ̂ −τ̂
−τ̂ ρ̂+ τ̂

)
, (3.35)

where τ = τ̂ + βm
2πi and ρ = ρ̂+ βm

2πi . After an Sp(4,Z) transformation we can write this as

S−1ΠS =

(
ρ̂+ τ̂ τ̂

τ̂ βm
2πi + τ̂

)
=

(
τ + ρ+ 2βm

2πi τ −
βm
2πi

τ − βm
2πi τ

)
. (3.36)

Now consider the transformation

X 7→ XY , Y 7→ Y , (3.37)

which again changes the basic grid. Also note that the choices of the basic grid in the toric

diagram that we used are the only possibilities. In this case the curve is given by

F (XY, Y ) = Θ

[
0 0

0 0

](
z − τ +

βm

2πi

βx

2πi

∣∣∣τ + ρ− 2βm
2πi

βm
2πi − ρ

βm
2πi − ρ ρ

)
= 0 . (3.38)

The period matrix is given by

Π =

(
τ̂ + ρ̂ −ρ̂
−ρ̂ ρ̂+ βm

2πi

)
. (3.39)

After an Sp(4,Z) transformation we get

S−1ΠS =

(
βm
2πi + ρ̂ ρ̂

ρ̂ τ̂ + ρ̂

)
. (3.40)

Thus the period matrix has a cyclic symmetry (τ̂ 7→ ρ̂ 7→ βm
2πi ) with three period matrices

given by

Π :=

(
τ̂ + βm

2πi
βm
2πi

βm
2πi ρ̂+ βm

2πi

)
,

(
ρ̂+ τ̂ τ̂

τ̂ βm
2πi + τ̂

)
,

(
βm
2πi + ρ̂ ρ̂

ρ̂ τ̂ + ρ̂

)
. (3.41)

This symmetry is quite clear from the web diagram and is also present in the corresponding

partition function as we will see in a later section.

This analysis can be extended to N > 1 by applying the method of images as above.

In this case the curve should be invariant (up to F (X,Y ) 7→ XaY bF (X,Y )) under the

transformations

X 7→ Xe2σ , Y 7→ Y eNλ and ,X 7→ XeNλ , Y 7→ Y e2Nσ . (3.42)

The curve is given by summing over all the monomials associated with the vertices of the

toric diagram (k, l) 7→ Xk/NY l,

F (X,Y ) :=
+∞∑

k,l=−∞
AklX

k
N Y l =

N−1∑

j=0

∑

m,l

Aj
mlX

m+ j
N Y l , (3.43)

– 32 –



J
H
E
P
0
3
(
2
0
0
8
)
0
6
9

where in the final expression above we have defined j = k (mod N). Using eq. (3.42) we

see that

Aj
ml = Aj e

m(m−1)µ+l(l−1)σ+mlNλ+ 2µjm
N

+jλn . (3.44)

So the curve becomes

F (X,Y ) =
N∑

j=0

Aj

∑

m,l

em(m−1)µ+l(l−1)σ+mlNλ+ 2µjm
N

+jλnXm+j/NY l , (3.45)

=

N−1∑

j=0

AjΘ

[
0 j

N

0 0

](
z

Nβx

2πi

∣∣∣ τ Nβm
2πi

Nβm
2πi Nρ

)
,

where X = eNβx and Y = e2πiz. This agrees with the matrix model calculation of the last

section.

3.5 ÂN−1 theories

In the last section we saw that 6D theories with Nf = 2N can be engineered using ellip-

tically fibered CY which can be described by semi-compact web diagrams. In this case

one can ask the question about the relevance, if any, of completely compact web diagram

obtained by identifying both the NS5-brane direction as well as the D5-brane direction

from the web diagrams of U(N) theory with Nf = 2N . The case of U(1) with Nf = 2N is

shown in figure 26. It is easy to see that if the NS5-brane direction is not compact but the

D5-brane direction is compact we get 5D U(1) × U(1) theory with bifundamental matter.

Thus compactifying the NS5-brane direction gives us 6D U(1) × U(1) theory compactified

on T2 with bifundamental matter. In case of N D5-branes we get 6D U(N)×U(N) theory

with matter in (N, N̄) + (N̄ ,N) compactified on T2 [47].

4. Topological string amplitudes and BPS degeneracies

In the previous section we reviewed the geometric engineering of compactified 4, 5 and 6

dimensional N = 2 theories from CY3-folds via type IIA, M-theory or F-theory compacti-

fications. An important ingredient of the geometric engineering recipe is the calculation of

the gauge theory prepotential from the genus zero topological string amplitude of the corre-

sponding CY3-fold [1]. In this section we will review the interpretation of topological string

amplitudes as the generating functions of the BPS degeneracies of wrapped M2-branes (or

D2-brane and D0-branes) which give rise to particles in the five dimensional theory.

Consider type IIA strings compactified on a CY3-fold X. The theory on the transverse

four dimensions has N = 2 supersymmetry. This theory in 4 dimensions has certain F-

terms (g ≥ 1)
∫
d4xFg(ti)R

2
+ F

2g−2
+ , (4.1)

which can be calculated exactly. In the above expression R2
+ is the contraction of self-dual

part of the Riemann tensor and F+ is the self-dual part of the graviphoton field strength.
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U(1) SYM
with adjoint
matter

U(1) SYM
with N f =2

with adjoint
matter

U(1) SYM

U(1) SYM
with N f =2

A 0 Quiver

Theory

QuiverA0
Theory

with adjoint
matter

U(2) SYM U(2) SYM
with adjoint
matter

with N f

U(2) SYM
=4

U(2) SYM
with N f=4

QuiverA1
Theory Theory

QuiverA1

   5D 6D

Figure 25: Field theories in 5 and 6 dimensions with various matter content and the corresponding

web diagrams representing the CY3-fold geometry.

The function Fg is the A-model topological string amplitude of X [48, 49] and depends

on ti, the Kähler parameters of X. As mentioned before the prepotential of the theory is

given by genus zero amplitude for which the F-term is given by
∫
d4xF i

+ ∧ F j
+ ∂ti∂tjF0 . (4.2)

Thus the gauge coupling of the 4D theory in terms of the genus zero amplitude is given by

τij = ∂ti∂tjF0(ti) . (4.3)
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Figure 26: The web diagram of the 6-dimensional Â0 theory.

The topological string amplitudes Fg arise in the A-twisted topological theory as inte-

grals over the genus g moduli space of Riemann surfaces and are related to the generating

functions of the genus g Gromov-Witten invariants. Let us denote by ω ∈ H2(X,C)

the complexified Kähler class of X. Then the topological string amplitudes be compactly

organized into the generating function

F (ti, λs) =
∞∑

g=0

λ2g−2
s Fg(ti) , (4.4)

where λs is the constant self-dual graviphoton field strength.

From the worldsheet point of view the genus g amplitude, Fg, is the generating function

of the “number” of maps from a genus g Riemann surface to CY3-fold X. However, the

target space viewpoint provides a more physical interpretation of the generating function

F (ti, λs), which we now review [10, 11]. Recall that in M-theory compactification on CY3-

fold X we get a 5-dimensional field theory with eight supercharges. The particles in this

theory come from quantization of the wrapped M2-branes on various 2-cycles of X. If we

consider compactifying one direction then we can interpret the particles as wrapped D2-

branes and the KK modes as bound D0-branes. In this case integrating out these various

charged particles gives rise to the F-terms in the effective action. The contribution of a

particle of mass m and in representation R of the SU(2)L × SU(2)R (the little group of

massive particles in 5D) to F is given by

S = logdet
(
∆ +m2 + 2e σLF

)
=

∫ ∞

ǫ

ds

s

TrR(−1)σL+σRe−sm2
e−2seσLF

(2 sinh(seF/2))2 , (4.5)

where σL is the Cartan of SU(2)L and arises because the graviphoton field strength is self-

dual. e is the charge of the particle and is equal to its mass and we identify the graviphoton

field strength F = λs. The mass of the particle is given by the area of the curve on which

the D2-brane is wrapped. An extra subtlety arises due to D0-branes. In the lift to M-

theory we see that a wrapped M2-brane comes with momentum in the circle direction and

therefore if we denote the mass of the M2-brane wrapping a curve class Σ ∈ H2(X,Z) by

TΣ then the mass of the M2-brane with momentum n is given by taking TΣ to TΣ+2πin/λ.

Let us denote by N
(jL,jR)
Σ the number of BPS states coming from M2-brane wrapped on the

holomorphic curve Σ and left-right spin content under SU(2)L × SU(2)R given by (jL, jR).
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Then the total contribution coming from all particles is obtained by summing over the

momentum, the holomorphic curves and the left-right spin content,

F =
∑

Σ∈H2(X,Z)

∑

n∈Z

∑

jL,jR

N
(jL,jR)
Σ

∫ ∞

ǫ

ds

s

Tr(jL,jR)(−1)σL+σRe−sTΣ−2πine−2sσLλs

(2 sinh(sλs/2))2
, (4.6)

=
∑

Σ∈H2(X,Z)

∞∑

k=1

∑

jL,jR

N
(jL,jR)
Σ e−kTΣ

Tr(jL,jR)(−1)σL+σRe−2kλsσL

k(2 sinh(kλs/2))2
,

=
∑

Σ∈H2(X,Z)

∞∑

k=1

∑

jL

N jL
Σ e−kTΣ

TrjL
(−1)σLe−2kλsσL

k(2 sinh(kλs/2))2
,

where

N jL
Σ =

∑

jR

N
(jL,jR)
Σ (−1)2jR(2jR + 1) . (4.7)

It is useful to define a different basis of SU(2)L representations given by Ig = (2(0) + (1
2))g

such that in terms of this basis

∑

jL

N jL
Σ [jL] =

∞∑

g=0

ng
ΣIg . (4.8)

The coefficients ng
Σ are integers and given by

∞∑

g=0

ng
Σ(−1)g

(
q1/2 − q−1/2

)2g
=
∑

jL

N jL
Σ

(
q−jL + · · · + q+jL

)
. (4.9)

In terms of these integers one can write F as

F =
∑

Σ∈H2(X,Z)

∞∑

k=1

∞∑

g=0

ng
Σe

−kTΣ
TrIg(−1)σLe−2kλsσL

k(2 sinh(kλs/2))2
, (4.10)

It is easy to show that

TrIg(−1)σLe−2kλsσL =
(
TrI1(−1)σLe−2kλsσL

)g
=
(
2 sinh(kλs/2)

)2g
. (4.11)

Thus we get

F =
∑

Σ∈H2(X,Z)

∞∑

k=1

∞∑

g=0

ng
Σ

k
(2 sinh(kλs/2))

2g−2e−kTΣ . (4.12)

The target space point of view allows the topological string amplitudes to be written in

terms of integers ng
Σ which give the BPS degeneracies of the states coming from wrapped

D2-branes. The fact that F has this particular form with integer ng
Σ has been confirmed

for many non-compact toric threefolds.
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4.1 Second quantized strings and A-model partition function

In the previous section we saw that the target space view point when discussing the topo-

logical string amplitudes is perhaps more interesting than the worldsheet view point since it

allows the amplitudes to be written in terms of invariants which are integers. However an-

other interesting property, the integrality of eF , becomes clear from this view point as well.

To see this note that we can write eF , which we will call the partition function from

now on, as

Z(ω, gs) = eF (ω,gs) =
∏

Σ∈H2(X)

∏

jL

+jL∏

k=−jL

∞∏

m=0

(
1 − q2k+m+1QΣ

)(−1)2j+1(m+1)N
jL
Σ

, (4.13)

where QΣ = e−TΣ and q = e−iλs . This expression looks very much like ‘counting’ the

states in a Hilbert space (this was also noted in [10] for the case of jL = 0 BPS states).

In a sense we have already explained how partition function counts M2-branes. So

the integrality of Z must be directly related to this integrality in F . We can in fact

see Z as the partition function of a second quantized theory built purely out of fields

creating M2-branes. Let ΦΣ,m1,m2(z1, z2) denote a field creating an M2-brane BPS state,

where zi denote the two complex coordinates of the 4 dimensional space, Σ denotes

the BPS charge and mi denote the internal spins of the BPS particle with respect to

U(1) × U(1) = SO(2) × SO(2) ⊂ SO(4). Consider only holomorphic configurations of the

BPS fields. This is what we usually do in the context of 2d chiral block of a conformal

theory. If we do this we have the natural decomposition

ΦΣ,m1,m2(z1, z2) = zm1
1 zm2

2

∑

n1,n2≥0

αn1+m1,n2+m2(Σ)zn1
1 zn2

2

where αn1+m1,n2+m2(Σ) are bosonic or fermionic modes depending on whether the field Φ

(which is the lowest component of a superfield) is bosonic or fermionic respectively. Note

also the prefactor monomial is the usual mapping of modes from cylinder to the plane for

each zi. Note that j3L = n1 + n2 +m1 +m2 for each mode αn1+m1,n2+m2(Σ).

Since N jL
Σ is the BPS degeneracy of the states with charge Σ and SU(2)L spin jL we

can write the above partition function as

Z := TrH(−1)2(jL+jR) q2j3
L e−T . (4.14)

where H denotes the subspace of the second quantized Hilbert space generated by holo-

morphic modes of the lowest component of the BPS fields and T denotes the total mass

of the BPS states which is the same as the Hamiltonian of the theory. It is quite exciting

that the partition function of topological string seems to be counting a second quantized

hilbert space of holomorphic components of BPS states. It is also natural to believe there

is an interesting algebra related to this partition function. In particular we can take the

product of two holomorphic BPS fields as defining an algebra:

ΦΣ1ΦΣ2 =
∑

Σi=Σ1+Σ2

CiΦΣi

This would be interesting to study further. It would also be interesting to see the connection

of this holomorphic OPE of BPS states to the BPS algebra defined in [50].
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4.2 Non-compact toric threefolds and the topological vertex

In this section we consider the case of non-compact toric CY3-folds. These CY3-folds are

extremely interesting not only because they are “simple” enough so that exact calculation

of A-model partition function can be done but also because they give rise to gauge theories

via geometric engineering [1] as we saw in the last section.

From the discussion of the last section we see that if the graviphoton field strength is

not self-dual F := F+ +F−, then we can write the contribution of coming from integrating

out the particle in representation R of SU(2)L × SU(2)R as

S :=

∫ ∞

ǫ

ds

s

TrR(−1)σL+σRe−sm2
e−2se(σLF++σRF−)

(2 sinh(seF+/2))(2 sinh(seF−/2))
. (4.15)

Summing over the contribution from all particles as before we get

F (q1, q2) =

∑

Σ∈H2(X,Z)

∞∑

n=1

∑

jL,jR

N
(jL,jR)
Σ

(
(q1q2)

−njL +· · ·+(q1q2)
njL
)((q1

q2

)−njR

+· · ·+
(

q1

q2

)njR
)

n
(
q
n/2
1 − q

−n/2
1

)(
q
n/2
2 − q

−n/2
2

) e−nTΣ ,

(4.16)

where we have defined q1 = eF+ , q2 = eF− . The integers N
(jL,jR)
Σ give the degeneracy of

particles with spin content (jL, jR) and charge Σ and are the number of cohomology classes

with spin (jL, jR) of the moduli space of D-brane wrapped on a holomorphic curve in the

class Σ [10, 11]. Because the D-brane has a U(1) gauge field living on its worldvolume

the moduli space of supersymmetric configurations includes not only the curve moduli but

also the moduli of the flat connections on the curve coming from the gauge field. Since

the moduli space of flat connections on a smooth curve of genus g is T 2g therefore the

moduli space of the D-brane is T 2g fibration over the moduli space of the curve. The total

space is a Kähler manifold and the Lefshetz action by the Kähler class is the diagonal

SU(2)D ⊂ SU(2)L × SU(2)R action on the moduli space. The SU(2)L × SU(2)R action on

the moduli space is such that SU(2)L acts on the fiber direction and the SU(2)R acts in

the base direction.

In the previous section when discussing the generic CY3-folds we summed over the

SU(2)R action by taking the graviphoton field strength to be self-dual. This was essen-

tially due to the fact that N
(jL,jR)
Σ can change as we change the complex structure; the

supersymmetry algebra allows such pairings between neighboring jR’s to give a non-reduced

multiplet. But N jL
Σ , which sums over all jR’s with alternating signs remains invariant. For

the case of non-compact toric CY3-folds there are no complex structure deformations.

Therefore one would expect no jumps in the N
(jL,jR)
Σ degeneracies, and so one would hope

to be able to compute these as well. We will come back to this after our discussion of the

topological vertex.

Topological vertex. It was shown in [12] (see also the earlier work [62, 71, 54, 55])

that topological string amplitude for non-compact 3-folds can be calculated using the cor-

responding web diagrams and the topological vertex: A function of q, CR1R2R3 , depends
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on three representation, R1,2,3, of U(∞) associated with each tri-valent vertex of the web

diagram. The topological vertex CR1R2R3 is actually an open string amplitude for a certain

geometry with D-branes as we will see later. An expression for the topological vertex in

terms of the Hodge integrals was proposed in [63]. The proposed expression was checked

for many nontrivial representations but a general proof remains an open problem. The

relation between Hodge integrals and topological vertex with one trivial representation

was determined in [64] using localization.5 For local toric threefolds with one compact

4-cycle (so that one representation of the topological vertex is always trivial) the paritition

function can be determined using localization and agrees with the topological vertex calcu-

lation [70]. Let us briefly review the idea behind the topological vertex and the derivation

of topological string amplitudes for a non-compact CY3-fold.

Recall that in the last section we saw that non-compact toric 3-folds can be represented

by web diagrams which captures the non-trivial aspects of the geometry as a tri-valent

graph in two dimensions. The graph is the locus of degeneration of a T2 fibration over

the plane. Along each edge of the web a 1-cycle of the fiber T2 shrinks and therefore at

each point of the edge we have an S1, the cycle dual to the one shrinking. Given this cycle

we can consider a D-brane with 3 dimensional worldvolume S1 ×C which wraps this cycle

and fills two other directions only one of which could be in the plane of the web diagram.

Such a 3-cycle is Lagrangian and can be used to define the boundary conditions for the

open topological strings [51, 52]. As we mentioned before the web diagrams corresponding

to non-singular geometries are tri-valent graphs. All the vertices of the web diagram are

SL(2,Z) transform of each other and hence the web diagram can be “built” using the basic

vertex, in which we have (1, 0), (0, 1) and (−1,−1) lines coming together, and its SL(2,Z)

transforms joined by edges which are straight lines. Such a web with only (1, 0), (0, 1) and

(−1,−1) lines corresponds to threefold which is C3. In this case the geometry is trivial

and the only contribution to the topological string amplitude comes from constant maps.

However, as mentioned before we can have D-branes in this geometry which will provide

boundaries for maps from worldsheet with boundaries as shown in 27 where Ri are the

representations in which we take the holonomy around the circle which the D-branes wrap.

The open topological string amplitude of this geometry is given by the topological vertex

CR1R2R3 =
∑

Q1,Q2

N
R1Rt

3
Q1Q2

qκR2
/2+κR3

/2
WRt

2Q1
WR2Q2

WR2

, (4.17)

where

N
R1Rt

3
Q1Q2

=
∑

Q

NR1
QQ1

N
Rt

3
QQ2

. (4.18)

Here N c
ab is the degeneracy of representation c in the tensor product a⊗b, the WR1R2 is the

link invariant for Hopf link for U(∞), and κR denotes a quadratic casimir for representation

R. Another useful representation of the vertex is given using the skew-Schur functions. Let

5The relation between Hodge integrals and topological vertex was also explored in [65 – 70]
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R1

R2

R3

Figure 27: The topological vertex is defined as the open string amplitudes in the presence of three

stacks of Lagrangian branes.

us denote the Young diagram corresponding to representation R as µR then [56]

CR1R2R3 = q(κR1
+κR3

)/2sRt
3
(qρ)

∑

R

sRt
1/R

(
qµR3

+ρ
)
sR2/R

(
q
µ

Rt
3
+ρ
)
, (4.19)

where sR1/R(x) is the skew-Schur function defined as

sR1/R(x) =
∑

R2

NR1
RR2

sR2(x) , (4.20)

and qµ+ρ = {qµ1−1/2, qµ2−3/2, qµ3−5/2, . . .}.
To calculate the partition function for any non-compact threefold we consider its web

diagram and associate with each leg a representation Ri and with each vertex CRiRjRk

where Ri,j,k are the representations on the legs joining the vertex. Then the partition

function is given by multiplying all the vertices together and summing over all the repre-

sentations with weights
∏

i e
−TiℓRi where Ti is area of the curve associated to the i-th edge

and ℓR is the number of boxes in the Young diagram corresponding to R. There are extra

subtleties associated with orientation of the legs which leads to extra framing factors. For

details of this we refer the reader to [12].

As an example consider the case of the resolved conifold as shown in 28. We will see

that using the identities involving Schur and skew-Schur function it is possible to write a

simple expression for the partition function of this geometry. We will use similar identities

involving skew-Schur function to determine the partition functions of gauge theories in

the next section.

Denote by T the area of the P1 then partition function is given by

ZR1,R2,R3,R4 =
∑

R e
−TℓRCR1R2Rt(q) (−1)ℓRCR Rt

3 Rt
4
(q) . (4.21)

Using eq. (4.19) we can write ZR1,2,3,4 as (Q := e−T )

ZR1,2,3,4 = q(κR1
+κR2

−κR3
−κR4

)/2sRt
1
(qρ)sR3(q

ρ)
∑

η1,η2

sRt
2/η1

(qµR1
+ρ)sR4/η2

(
qµt

3+ρ
)

∑

R

QℓR(−1)ℓR sR/η2
(qµ3+ρ) sRt/η1

(
q
µ

Rt
1
+ρ
)
.
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R

R

R

R

R

1

2

3

4

Figure 28: The web diagram of the resolved conifold with four stacks of D-branes. The rep-

resentation R, which is summed over, is associated with the internal line and R1,2,3,4 are fixed

representations associated with the external lines of the web.

The sum over R can be carried out exactly using the identity [82]

∑

R

sR/η1
(x)sRt/η2

(y) =
∏

i,j

(1 + xiyj)
∑

η3

sηt
2/η3

(x)sηt
1/ηt

3
(y) . (4.22)

After summing over R, η1,2 and denoting the Schur function corresponding to R in the

variable (x1, x2, . . . , y1, y2, . . .) by sR(x, y) we get

ZR1,2,3,4 = q(κR1
+κR2

−κR3
−κR4

)/2sRt
1
(qρ)sR3(q

ρ)
∏

i,j

(
1 −Qq

µR3,i+ρi+µ
Rt

1,j
+ρj
)

(4.23)

∑

η3

Qℓη3 (−1)ℓη3 sR2/η3

(
Qq−µR1

−ρ, qµR3
+ρ
)
sR4/ηt

3

(
q
µRt

3
+ρ
, Qq

−µRt
1
−ρ
)
.

The sum in the expression above is finite and can be determined easily for any given R2,4.

Consider the case (R1, R2, R3, R4) = (•, •, •, R) and (R1, , R3, ) then

Z•••R = q−κR/2

( ∞∏

k=1

(
1 −Qqk

)k
)
sR(qρ, Qq−ρ) , (4.24)

ZR1, ,R3, =

( ∞∏

k=1

(
1 −Qqk

)k
)(

∏

k

(
1 −Qq−k

)Ck(Rt
1,R3)

)
sR1(q

ρ)sRt
3
(qρ)

(
q

(1 − q)2
(1 −Q)2 + fR3,Rt

3
−Q(fR1Rt

3
+ fRt

1R3
) −Q2fR1Rt

1

)
.

Where

fR1R2 =
∑

k

Ck(R1, R2)q
k = s (q−µR1

−ρ)s (q−µR2
−ρ) − s2 (q−ρ) (4.25)

= q−1(q − 1)2fR1fR2 + fR1 + fR2 , and

fR =
∑

(i,j)∈R

qj−i .
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Generalized partition function. In a previous section we saw that the BPS degenera-

cies given by the target space viewpoint of the topological strings are obtained by summing

over the jR spin content. This is necessary in order to obtain an index invariant under the

complex structure deformations of the CY3-fold. Hence for a CY3-fold with no complex

structure deformation we do not have to sum over the SU(2)R. As mentioned before non-

compact CY3-folds are such spaces for which there are no complex structure deformations

and hence a more general partition function encoding the full SU(2)L×SU(2)R spin content

can be defined.

The generalized Partition function in such cases would be given as a trace over the

second quantized Hilbert space generated by holomorphic components of the BPS fields:

Z = TrH(−1)2(jL+jR) q
j3
L+j3

R
1 q

j3
L−j3

R
2 e−T = eF (q1,q2) =

∏

Σ∈H2(X)

∏

jL,jR

+jL∏

kL=−jL

+jR∏

kR=−jR

∞∏

m1,m2=0

(
1−qkL+kR+m1+

1
2

1 q
kL−kR+m2+ 1

2
2 QΣ

)(−1)2(jL+jR)+1N
jL,jR
Σ

.

(4.26)

To determine the invariants n
(g1,g2)
Σ which correspond to the basis (Ig1 , Ig2) we can use the

relation

∑

g1,g2≥0

ng1,g2

Σ (−1)g1+g2

(
(q1q2)

1/4 − (q1q2)
−1/4

)2g1

((
q1
q2

)1/4

−
(
q1
q2

)−1/4
)2g2

= (4.27)

∑

jL,jR

N jL,jR
Σ (−1)2(jL+jR)

(
(q1q2)

−jL + · · · + (q1q2)
+jL
)
((

q1
q2

)−jR

+ · · · +
(
q1
q2

)+jR
)
.

Direct computation of such a partition function, say using some generalized topological

vertex, is not known for any non-compact 3-fold. However, using the geometric engineer-

ing relation between the compactified 5D gauge theories and non-compact 3-folds one can

obtain the generalized partition function for some cases using the instanton calculus de-

veloped by Nekrasov [5, 75]. Note that in the non-compact case the notion of SU(2)R is

ambiguous, as it can mix with R-symmetry (there is no normalizable 4d gravity mode). In

fact a particular combination of SU(2)R and the R-symmetry SU(2) is what is computed

in [5] which we find to correspond to the SU(2)R defined in the D2-brane moduli problem

acting on the base of the moduli space [11].

As an example consider the pure five dimensional U(2) gauge theory which can be

obtained via M-theory compactification on local P1 × P1. In this case the gauge theory

partition function was calculated in [5]. This partition function can also be calculated

using the refined vertex formalism developed recently in [76]. We can use these results to

verify that the generalized partition function gives the degeneracies which represent the

SU(2) × SU(2) action on the moduli space of the D-branes.

The partition function for the case of local P1 × P1 is given by

Z :=
∑

R1,2

Ql1+l2
b ZR1,R2(Qf ) , (4.28)
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where Tb,f = −log(Qb,f ) are the Kähler parameters associated with the base and the fiber

P1 and we sum over all pairs of Young diagrams R1,2 such that

ZR1,R2(Qf )=
CR1(q1, q2)CR2(q1, q2)CRT

1
(q2, q1)CRT

2
(q2, q1)q

κR1
/2+κR2

/2
1 (q1/q2)

P
i(µ

2
1,i−µ2

2,i)/2

∏
k1,k2

(
1 − qk1

1 q
k2
2 Q

)Ck1,k2
(R1,R2)

.

In the above expression

CR(q1, q2) = (−1)lR(q1q2)
κR/8 q

h1
R/2

1 q
h2

R/2
2

∏

(i,j)∈R

(
1 − q

h1
R(i,j)

1 q
h2

R(i,j)
2

)−1
. (4.29)

and κR =
∑

(i,j)∈R(j− i), h1
R(i, j) = µt

j − i, h2
R(i, j) = µi − j+1. The integers Ck1,k2(q1, q2)

are given by

∑

k1,2

Ck1,k2(R1, R2)q
k1
1 q

k2
2 =

∑

(i,j)∈R1

q
−h1

R2
(i,j)

1 q
−h2

R1
(i,j)

2 +
∑

(i,j)∈RT
2

q
h2

RT
1

(i,j)

1 q
h1

RT
2

(i,j)

2

+
∑

(i,j)∈R2

q
h1

R1
(i,j)

1 q
h2

R2
(i,j)

2 +
∑

(i,j)∈RT
1

q
−h2

RT
2

(i,j)

1 q
−h1

RT
1

(i,j)

2 .

We can use the above partition function to calculate the BPS degeneracies of various

states corresponding to charge Σ ∈ H2(X,Z). For example the term linear in Qb, given by

(R1, R2) = ( , •), (•, ), determines the integers N
(jL,jR)
β for all curves β = B + kF k ≥ 0

and gives

N
(jL,jR)
B+kF = δjL,0 δjR,k+1/2 , (4.30)

which is consistent with the fact that these are genus zero curves and therefore action in

the fiber direction, which is just a point, is trivial. The moduli space of these curves is

given by P2k+1 and the SU(2)R action on this is just the Lefshetz action via Kähler class

therefore the cohomology classes decomposes into a spin [k + 1/2] representation. If ω is

the Kähler class then the j3R on the cohomology class ωn is given by n − k − 1/2. And

since there is one such class for each n we get a single copy of the representation [k+ 1/2].

A more interesting example in which both the left and the right spin content is non-

trivial is given by the curve 2B + 2F , the canonical class of the F0. This is a genus one

curve and therefore the corresponding moduli space will admit non-trivial SU(2)L action.

To determine the spin content from the partition function we will have to expand it to order

Q2
bQ

2
f , take the log of the corresponding expression and subtract multicover contribution.

In this case we get

∑

jL,jR

N
(jL,jR)
2B+2F (jL, jR) =

(
1

2
, 4

)
+

(
0,

7

2

)
+

(
0,

5

2

)
. (4.31)

To see that this is the correct result note that the moduli space of 2B + 2F together with

its jacobian is give by a P7 bundle over P1 × P1: pick a point in P1 × P1, the moduli
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space of curves passing through that point in the class 2B + 2F is given by P7. Thus the

diagonal SU(2)L × SU(2)R action which just the Lefshetz action is given by

(
1

2

)
⊗
(

1

2

)
⊗
(

7

2

)
=

(
5

2

)
+ 2

(
7

2

)
+

(
9

2

)
. (4.32)

Note that since 2B + 2F is a genus one curve the corresponding jacobian is also genus

one and therefore jL can only be 0, 1
2 . From this restriction on jL and the above diagonal

action we see that the unique left-right spin content is given by
(

1

2
, 4

)
+

(
0,

7

2

)
+

(
0,

5

2

)
, (4.33)

exactly as predicted by the partition function calculation.

It would be interesting to generalize the notion of topological vertex to depend on two

parameters q1, q2 instead of just q. In a sense from [5] we already have a prediction for

what this should be when two representations of the vertex are trivial.

5. Partition functions from the topological vertex

In this section we determine the A-model partition functions for the various CY3-fold ge-

ometries we discussed in the last section. The genus zero contribution to the partition

function determines the prepotential of the corresponding gauge theory realized via geo-

metric engineering.

The partition functions are determined mostly using the topological vertex6 [12]. How-

ever, in some cases it is easier to use the Chern-Simons theory [53 – 55].

We will discuss in detail the partition function of the CY3-folds which realize the U(1)

and U(2) theory with an adjoint hypermultiplet as well as the CY3-folds which realize

U(1) and U(2) theory with 2 and 4 fundamental hypermultiplets respectively. We will also

give the expressions for the case of corresponding U(N) theories using the Weyl symmetry

present in the geometry.

5.1 U(N) with massive adjoint

5.1.1 N = 1

We start by discussing the case of 5-dimensional U(1) theory. The geometry of the cor-

responding CY3-fold is encoded in the (p, q) 5-brane web diagram shown in figure 29(a).

Given the web configuration we can proceed with the partition function calculation. Using

the topological vertex techniques [12] the partition function in this case is given by

Z(T, Tm, q) :=
∑

R

e−T ℓR (−1)ℓRZR(Tm, q) , (5.1)

6In this section we will use slightly different expression for the topological vertex than eq. (4.19). Let

us denote the expression given in eq. (4.19) by bCR1R2R3
(q) then in this section we will use CR1R2R3

(q) =

(−1)ℓR1
+ℓR2

+ℓR3 q−(κR1
+κR2

+κR3
)/2 bCR1R2R3

(q−1). Since gluing rule involves taking the transpose, which

gets rid of (−1)ℓRqκR factors, and the closed topological string partition function is invariant under q 7→ q−1

therefore both expressions give the same result for geometries with no branes.
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R
R1

R

Figure 29: The web diagram for U(1) theory with an adjoint field.

where

ZR(Tm, q) =
∑

R1

e−Tm ℓR1 (−1)ℓR1C•Rt
1 R(q)C•R1Rt(q) . (5.2)

The two Kähler parameters T and Tm are related to the coupling constant of the gauge

theory and the mass of adjoint hypermultiplet respectively,

Qτ := e−T−Tm = e2πiτ , (5.3)

Qm := e−Tm = eβm .

The partition function ZR(Tm, q) can be determined using the expression of the topological

vertex in terms of the Schur and skew-Schur polynomials derived in [56] and given in the

last section. Let us denote the Young diagram corresponding to R and R1 by µR and µR1

respectively. Then ZR is given by,

ZR = sR(q−ρ)sRt(q−ρ)
∑

R1

Q
ℓR1
m (−1)ℓR1 sRt

1
(q−µ−ρ) sR1(q

−µt−ρ) , (5.4)

= sR(q−ρ)sRt(q−ρ)
∑

R1

sRt
1
(−Qm q−µRt−ρ) sR1(q

−µR−ρ) ,

where in the second equation we used the fact that sR1(x) is a homogeneous function of

degree lR1 . Now using the identity

∑

R

sRt(x)sR(y) =
∏

i,j

(1 + xiyj) , (5.5)

we immediately get

ZR = sR(q−ρ)sRt(q−ρ)
∏

i,j≥1

(
1 −Qmq

−µi−ρi−µt
j−ρj

)
, (5.6)

= sR(q−ρ)sRt(q−ρ)
∏

i,j≥1

(
1 −Qmq

−µi+i−µt
j+j−1

)
,

= sR(q−ρ)sRt(q−ρ)

∞∏

k=0

(
1 −Qmq

k+1
)k+1 ∏

(i,j)∈R

(
1 −Qmq

h(i,j)
)(

1 −Qmq
−h(i,j)

)
,
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where

hR(i, j) = µR,i − j + µRt,j − i+ 1 (5.7)

is the hook length and we have used the relation

∑

i,j≥1

q−h(i,j) =
q

(1 − q)2
+ fR,Rt(q) =

q

(q − 1)2
+
∑

(i,j)∈R

(
qh(i,j) + q−h(i,j)

)
, (5.8)

fR,Rt(q) = q−1(q − 1)2fR(q)fRt(q) + fR(q) + fRt(q) , fR(q) =
∑

(i,j)∈R

qj−i .

Thus the full partition function is given by (Q = e−T )

Z=

∞∏

k≥0

(
1−Qmq

k+1
)k+1∑

R

QℓR(−1)ℓRsR(q−ρ)sRt(q−ρ)
∏

(i,j)∈R

(
1−Qmq

h(i,j)
)(

1−Qmq
−h(i,j)

)
.

Using the definition of sR(q−ρ) = (−1)ℓRCRt • • we get

Z=
∞∏

k≥0

(
1−Qmq

k+1
)k+1∑

R

QℓR(−1)ℓRq
P

(i,j)∈R h(i,j)
∏

(i,j)∈R

(
1−Qmq

h(i,j)
)(

1−Qmq
−h(i,j)

)
(
1 − qh(i,j)

)2 ,

=

∞∏

k≥0

(
1 −Qmq

k+1
)k+1 ∑

R

(QQm)lR
∏

(i,j)∈R

(
1 −Qmq

h(i,j)
) (

1 −Q−1
m qh(i,j)

)
(
1 − qh(i,j)

)2 . (5.9)

The first term in the above expression gives the perturbative contribution to the gauge

theory prepotential. The instanton part of the above partition function is given by

Zinst =
∑

R

QℓR
∏

(i,j)∈R

(
1 −Qmq

h(i,j)
) (

1 −Qmq
−h(i,j)

)
(
1 − qh(i,j)

) (
1 − q−h(i,j)

) . (5.10)

This is the 5-dimensional partition function. To obtain the partition function of the 4

dimensional gauge theory we take the limit β → 0 such that q = e−βǫ,

Zinst =
∑

R

e2πiτℓR
∏

(i,j)∈R

(h(i, j)ǫ +m)(h(i, j)ǫ −m)

(ǫh(i, j))2
. (5.11)

which agrees with the results of [57].

From Chern-Simons theory. We can calculate the above 5D partition function from

the Chern-Simons theory also. The advantage of this approach is that we get the infinite

product structure of the partition naturally.

Let us briefly review the calculation of the A-model partition function using geometric

transition and the Chern-Simons theory following [12]. The geometry we are studying

admits a geometric transition, i.e., if we take the length of the internal line in the web

diagram , given by Tm, to zero we can separate the two lines of the web diagram in the

direction transverse to the plane in which the web is embedded. This is a complex structure

deformation of the geometry. Since the lines in the web diagram are the loci of degeneration

of the torus fibered over the plane of the web hence when the line are separated from each
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other we get an S3. Locally this is exactly the conifold transition the only difference being

the globally the geometry is different from that of a conifold. The closed topological string

partition function of the geometry we started from is given by the topological open string

partition function of the geometry obtained after the transition. In the case of the conifold

the open topological string theory partition function is given by the partition function of

the U(N) Chern-Simons theory on S3. The coupling constant, k, of the theory and rank

of the gauge group, N , are related to the size of the P1 and the string coupling as follows

Tm = Nλs , λs =
2π

N + k
. (5.12)

But for our geometry there is an extra subtlety because of the compact circle with boundary

on S3. As discussed in detail in [12, 55] the CS action is modified if there are finite area

holomorphic maps with boundaries on the three cycles. In the case of such a holomorphic

map the CS action gets modifies by the operator

O(τ) =

∞∑

n=1

Qn
τ

n
TrUnTrV n , (5.13)

= log

(
∑

R

QℓR
τ TrRU TrRV

)
.

where U, V are the holonomies around the two circles of the annulus. In the case at hand

U = V −1. Because of the geometry of the annulus in the target space we also have extra

winding numbers. Thus the operator that modifies the CS theory action is given by

∞∑

k=1

O(kτ) (5.14)

Thus the partition function is given by

Z =

∫
DAeScs(A)+

P∞
k=1 O(kτ) =

〈
e

P
k O(kτ)

〉
, (5.15)

=
∑

R1,2,...

Q
P∞

k=1 kℓRk
τ

〈 ∞∏

k=1

TrRk
UTrRk

U−1

〉
,

=
∑

R1,2,...

Q
P∞

k=1 kℓRk
τ

〈
Tr⊗kRk

UTr⊗kRk
U−1

〉
,

= S−1
••
(
q, qN

) ∑

R1,2,...

Q
P∞

k=1 kℓRk
τ (−1)

P
k ℓRk W⊗kRk⊗Rk,•

(
q, qN

)
.

WR,•(q, qN ) is the quantum dimension of R,

WR,• =
∏

(i,j)∈R

q(j−i+N)/2 − q−(j−i+N)/2

qhR(i,j)/2 − q−hR(i,j)/2
, hR(i, j) = µR,i − i+ µRt,j − j + 1 . (5.16)

and S−1
•• is the perturbative contribution to the partition function,

S−1
•• =

∞∏

k=1

(
1 − qk−N

)k
. (5.17)
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The partition function can then be written as

Z : = S−1
••

∞∏

k=1

∑

R

QkℓR
τ (−1)ℓRWR

(
q, qN

)
WR

(
q, qN

)
, (5.18)

=
∞∏

k=1

∑

R

QℓR
τ (−1)ℓRWR

(
q, qN

)
WR

(
q, qN

)

where

K(Q, q, λ) =
∑

R

QℓR (−1)ℓRWR

(
q, qN

)
WR

(
q, qN

)
(5.19)

= exp

(
−

∞∑

n=1

Qn

n
W

(
qn, qnN

)
W

(
qn, qnN

)
)
,

= exp


−

∞∑

n=1

Qn

n

(
qnN/2 − q−nN/2

qn/2 − q−n/2

)2

 ,

= (1 −Q)
∞∏

r=0

((
1 − qr+1+NQ

) (
1 − qr+1−NQ

)

(1 − qr Q) (1 − qr+2Q)

)r+1

.

Since Qm = e−Tm = q−N the full partition function is given by

Z=

( ∞∏

k=1

(
1 −Qk

τ

))( ∞∏

k=1

(
1 −Qmq

k
)k
) ∞∏

k,r=1

((
1 − qrQmQ

k
τ

) (
1 − qrQ−1

m Qk
τ

)

(1 − qr−1Qk
τ ) (1 − qr+1Qk

τ )

)r

. (5.20)

The above expression agrees with toplogical vertex computation, eq. (5.9), except for the

first term,
∏∞

k=1(1 −Qk
τ ). The reason for this is that in calculating the partition function

we neglected the contribution coming from the annuli which does not end on the three

cycle so that U, V are trivial. The contribution of such annuli is given by

∑

R

QℓR
τ =

∞∏

k=1

(
1 −Qk

τ

)−1
, (5.21)

which cancels the first term in eq. (5.20). Thus the Chern-Simons computation agrees with

the topological vertex calculation and moreover it naturally gives the partition function as

an infinite product.

Partition function of the 6-dimensional theory. Now lets consider the case of ge-

ometry giving rise to 6 dimensional gauge theory with massive adjoint. The corresponding

web diagram is shown in figure 30 below. The partition function is given by

Z :=
∑

R,R1,R2

QℓRQ
ℓR2
1 Q

ℓR1
m (−1)ℓR+ℓR1

+ℓR2CR R2 R1 CRt Rt
2 Rt

1
, (5.22)

=
∑

R

QℓR(−1)ℓR ZR(Q1, Qm) ,
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R

R

R2

R1

R2

Figure 30: The web diagram of the 6-dimensional adjoint theory.

where

ZR(Q1, Qm) =
∑

R1,R2

Q
ℓR2
1 Q

ℓR1
m (−1)ℓR1

+ℓR2CR R2 R1 CRt Rt
2 Rt

1
(5.23)

Using eq. (4.19) ZR is given by

ZR = sR(q−ρ)sRt(q−ρ)
∑

R1,R2

Q
ℓR1
1 Q

ℓR2
m



∑

R3

sRt
2/R3

(q−µR−ρ)sR1/R3
(q−µRt−ρ)


 (5.24)



∑

R4

sR2/R4
(q−µRt−ρ)sRt

1/R4
(q−µR−ρ)


 ,

= sR(q−ρ)sRt(q−ρ)
∑

R3,R4

sRt
2/R3

(q−µR−ρ)sR2/R4
(q−µRt−ρ)Q

ℓR3
m (−1)ℓR3



∑

R1

sR1/R3
(−Qmq

−µRt−ρ)sRt
1/R4

(q−µR−ρ)




Using the identity ([82] page 93),

∑

R

sR/R3
(x)sRt/R4

(y) =
∏

i,j

(1 + xiyj)
∑

eR

sRt
4/ eR(x)sRt

3/ eRt(y) . (5.25)

we get

ZR = sR(q−ρ)sRt(q−ρ)
∏

i,j

(1 −Qmq
−hR(i,j)) (5.26)

∑

R2, eR

Q
ℓR2
1 Q

ℓ eR
m (−1)ℓ eR

+ℓR2sRt
2/ eR(q−µR−ρ, Qmq

µR+ρ) sR2/ eRt(q
−µRt−ρ, Qmq

µRt+ρ) .

Where

sR/R1
(x, y) =

∑

R4

sR/R4
(x)sR4/R1

(y) , (5.27)
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The sum over R2 and R̃ can be determined exactly using the following identity ([82], page

93),
∑

A,B

QℓA
1 QℓB

2 (−1)ℓA+ℓBsA/Bt(x, y)sAt/B(z,w) = (5.28)

∞∏

k=1

∏
i,j

(
1 −Qk

1Q
k−1
2 xizj

)(
1 −Qk

1Q
k−1
2 xiwj

)(
1 −Qk

1Q
k−1
2 yizj

)(
1 −Qk

1Q
k−1
2 yiwj

)

(
1 −Qk

1Q
k
2

) .

ZR =
sR(q−ρ)sRt(q−ρ)∏∞

k=1(1 −Qk
1Q

k
2)

∏

i,j

(
1 −Qmq

−hR(i,j)
)

(5.29)

∞∏

k=1

∏

i,j

(
1 −Qk

1Q
k−1
m q−hR(i,j)

)(
1 −Qk

1Q
k+1
m qhR(i,j)

)(
1 −Qk

1Q
k
mq

−µR,i−ρi+µRt,j+ρj

)

(
1 −Qk

1Q
k
mq

−µRt,i−ρi+µR,j+ρj

)
.

The above expression can be simplified using
∏

i,j

(
1 −Qk

1Q
k
mq

−µR,i−ρi+µRt,j+ρj

)(
1 −Qk

1Q
k
mq

−µRt,i−ρi+µR,j+ρj

)
= (5.30)

∏

i,j

1(
1 −Qk

1Q
k
mq

−h(i,j)
) (

1 −Qk
1Q

k
mq

h(i,j)
) .

to obtain

ZR =
sR(q−ρ)sRt(q−ρ)∏∞

k=1

(
1 −Qk

1Q
k
2

)
∏

i,j

(
1 −Qmq

−hR(i,j)
)

(5.31)

∞∏

k=1

∏

i,j

(
1 −Qk

1Q
k−1
m q−hR(i,j)

) (
1 −Qk

1Q
k+1
m qhR(i,j)

)
(
1 −Qk

1Q
k
mq

−hR(i,j)
) (

1 −Qk
1Q

k
mq

hR(i,j)
) ,

= Z•(−1)ℓR
∏

∈R

(
1 −Qmq

h( )
) (

1 −Qmq
−h( )

)
(
1 − qh( )

) (
1 − q−h( )

) (5.32)

∞∏

k=1

(
1 −Qk

ρQmq
h( )

) (
1 −Qk

ρQmq
−h( )

) (
1 −Qk

ρQ
−1
m qh( )

) (
1 −Qk

ρQ
−1
m q−h( )

)
(
1 −Qk

ρq
h( )

)2 (
1 −Qk

ρq
−h( )

)2 ,

Where Z• is the perturbative contribution to the partition function and as discussed

before Qρ = Q1Qm,

Z• =

∞∏

r=0

(
1 −Qmq

r+1
)r+1

( ∞∏

k=1

(
1 −Qk

ρQ
−1
m qr+1

) (
1 −Qk

ρQmq
−r−1

)
(
1 −Qk

ρq
r+1
) (

1 −Qk
ρq

−r−1
)

)r+1

. (5.33)

Thus the instanton part of the partition function (which is zero for Q = 0) is given by

Zinst =
∑

R

(QQm)ℓR



∏

∈R

(
1 −Qmq

h( )
) (

1 −Q−1
m qh( )

)
(
1 − qh( )

)2


 (5.34)

∞∏

k=1

(
1 −Qk

ρQmq
h( )

) (
1 −Qk

ρQmq
−h( )

) (
1 −Qk

ρQ
−1
m qh( )

) (
1 −Qk

ρQ
−1
m q−h( )

)
(
1 −Qk

ρq
h( )

)2 (
1 −Qk

ρq
−h( )

)2 ,
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Figure 31: The web diagram of the 5-dimensional U(2) adjoint theory.

Note that for Qm = 1 i.e., m = 0 the full partition function is given by

Z =

∞∏

k=0

(
1 − qk+1

)k+1

(1 −Qk+1
ρ )(1 −Qk+1

τ )
. (5.35)

5.1.2 N = 2

In this case the geometry is shown in figure 31. The partition function is given by

Z : =
∑

R, eR,R1,2,S

QℓR+ℓ eRQ
ℓR1

+ℓR2
m QℓS

f (−1)ℓR+ℓ eR
+ℓR1

+ℓR2
+lS CRt •R1

CSt Rt
1 RC eRt S R2

C•Rt
2

eR ,

=
∑

R, eR

QℓR+ℓ eR(−1)ℓR+ℓ eRK
R eR(Qm, Qf ) ,

(5.36)

where

KR eR(Qm, Qf )=
∑

R1,2,S

Q
ℓR1

+ℓR2
m QℓS

f (−1)ℓR1
+ℓR2

+ℓS CRt •R1
CSt Rt

1 RC eRt S R2
C•Rt

2
eR . (5.37)

Using the identities involving the skew-Schur functions the above partition function

can be written as a sum over R, R̃ of a product involving Qm, Qf . However, we will use a

simpler method which makes use of the fact that the geometry has only a few holomorphic

curves which can contribute.

To determineKR, eR(Qm, Qf ) note that in the limit Qf → 0 it is clear from the geometry

(figure 31) that we get two copies of the partition function of the U(1) theory therefore we

can write K
R, eR as

KR eR(Qm, Qf ))=

( ∞∏

k=0

(
1−Qmq

k+1
)2(k+1)

)
(−Qm)ℓR+ℓ eR

∏

(i,j)∈R, eR

(
1−Qmq

h(i,j)
)(

1−Q−1
m qh(i,j)

)
(
1 − qh(i,j)

)2

exp

( ∞∑

n=1

Qn
f

n
f1(q

n) +
(QfQm)n

n
f2(q

n) +

(
QfQ

2
m

)n

n
f3(q

n)

)
.
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Here, the three terms in the exponential correspond to the contribution of four holomorphic

curves in the geometry. There are three terms rather than four since we are taking the

area of the two exceptional curves to be equal to Tm. The contribution of the two curves

which are locally like the conifold is given by the prefactor in the above equation. The

coefficients fi(q) can be determined from eq. (5.37) by expanding it to linear order in Qf ,

f1(q) = −C •R

C• •R

C eRt •
C eRt • •

= −WR

WR

W eRt

W eRt

= − q

(1 − q)2
− fR, eRt , (5.38)

f2(q) = −2f1(q) ,

f3(q) = f1(q) ,

where we used the identity

C•R1 R2 = WR1Rt
2
qκR2

/2 . (5.39)

KR eR(Qm, Qf ) = K•• (−Qm)ℓR+ℓ eR

∏

(i,j)∈R, eR

(
1 −Qmq

h(i,j)
) (

1 −Q−1
m qh(i,j)

)

(1 − qh(i,j))2
(5.40)

∏

k

((
1 −Qfq

k
) (

1 −QfQ
2
mq

k
)

(1 −QfQmqk)
2

)Ck(R, eRt)

,

where
∑

k Ck(R1, R2)q
k = fR1R2(q). K•• contributes to the perturbative part of the parti-

tion function,

K•• =

∞∏

k=0

((
1 −Qmq

k+1
)2(

1 −Qfq
k+1
)(

1 −QfQ
2
m

)(
1 −QfQmq

k+1
)−2

)k+1

. (5.41)

Define QF = QfQm = e−2aβ , where a is the Coulomb branch moduli, then the full partition

function is given by

Z = K••
∑

R, eR

(QQm)ℓR+ℓ eR

∏

(i,j)∈R, eR

(
1 −Qmq

h(i,j)
) (

1 −Q−1
m qh(i,j)

)
(
1 − qh(i,j)

)2 (5.42)

∏

k

((
1 −QFQ

−1
m qk

) (
1 −QFQmq

k
)

(1 −QF qk)
2

)Ck(R, eRt)

.

Using the following identity [72]

∏

k

(1 − xqk)−Ck(R1,Rt
2) =(4x)−

(ℓR1
+ℓR2

)

2 q−
κR1

−κR2
4

∞∏

i,j=1

Sinhβ
2 (2a+~(µ1,i−µ2,j+j−i))
Sinhβ

2 (2a+ ~(j − i)

where x = e−2β a and q = e−β ~ it is easy to show that the above partition function agrees

with the results of [57].
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Figure 32: The web diagram of the 6-dimensional U(2) adjoint theory.

Generalization to the case of U(N) is simple using the corresponding web diagram

discussed in section 3 and the AN−1 Weyl symmetry present in the geometry,

Zinst =
∑

R1,...RN

(QQm)ℓ1+···+ℓN
∏

(i,j)∈R1,2,...,N

(
1 −Qmq

h(i,j)
) (

1 −Q−1
m qh(i,j)

)
(
1 − qh(i,j)

)2 (5.43)

∏

1≤i<j≤N

∏

k

((
1 −QFijQ

−1
m qk

) (
1 −QFijQmq

k
)

(
1 −QFijq

k
)2

)Ck(Ri,R
t
j)

.

Where QFij = e−β(ai−aj).

Partition function of the 6-dimensional theory. The geometry giving rise to 6 di-

mensional theory is shown in figure 32. The partition function is given by

Z : =
∑

R, eR, eS,R1,2,S

QℓR+ℓ eRQ
ℓ eS
1 Q

ℓR1
+ℓR2

m QℓS
f (−1)ℓR+ℓ eR

+ℓR1
+ℓR2

+ℓS+ℓ eSCRt eSR1
CStRt

1RC eRtSR2
CeStRt

2
eR,

=
∑

R, eR

QℓR+ℓ eR(−1)ℓR+ℓ eRK
R eR(Qm, Qf , Q1) ,

(5.44)

where

KR eR(Qm, Qf , Q1)

=
∑

R1,2,S, eS

Q
ℓR1

+ℓR2
m QℓS

f Q
ℓ eS
1 (−1)ℓR1

+ℓR2
+ℓS+ℓ eS CRt eSR1

CSt Rt
1 RC eRt S R2

CeSt Rt
2

eR .
(5.45)

We can write KR eR as

KR eR(Qm, Qf , Q1)

K
R eR(Qm, Qf , Q1 = 0)

= exp




∞∑

n,k=1

(Q1Q
2
mQf )nk

n
fn,k(Qm, Qf , q)


 . (5.46)
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Figure 33: The web diagram of the 5-dimensional U(1) theory with two hypermultiplets.

The coefficients fn,k can be determined easily by comparing the above expression with

eq. (5.45). It turns out that fn,k is independent of k and has the form

fn,k(Qm, Qf , q) = f(Qn
m, Q

n
f , q

n) . (5.47)

The function f(Qm, Qf , q) is given by

f(Qm, Qf , q) = 1 −QffR eRt −Q−1
f fRt eR + 2QfQmfR eRt (5.48)

+2(QfQm)−1f
Rt eR−QfQ

2
mfR eRt−

(
QfQ

2
m

)−1
f

RteR−
(
2−Qm−Q−1

m

)
(fR,Rt(q)+f eR, eRt(q))

− q

(1 − q)2

(
Qf +Q−1

f + 2Qm +
2

Qm
− 2QfQm − 2

QfQm
+QfQ

2
m +

1

QfQ2
m

− 4

)
.

It is easy to see from eq. (5.46) and eq. (5.48) that the partition function of the 6-

dimensionaltheory is given by the following substitution in the corresponding 5-dimensional

partition function,

(
1 − z qk

)
7→
(
1 − z qk

) ∞∏

r=1

(
1 −Qρzq

k
) (

1 −Qρz
−1q−k

)
(
1 −Qk

ρ

)k . (5.49)

5.2 U(N) with Nf = 2N

5.2.1 N = 1

We start by discussing the case of U(1) theory with two hypermultiplets in the funda-

mental representation. The CY geometry which gives rise to this theory via geometric

engineering [1] is well known and is blowup of T ∗P1 × C at two points. The toric geom-

etry of this CY space is encoded in the toric web shown below (for more details about

toric web see [39, 54]). Since this geometry is so simple it is possible to write down the

partition function almost without any calculation using expression for the free energy in

terms of integer invariants [10, 11]. The only holomorphic curves in the geometry are

B,E1, E2, B − E1, B − E2, B − E1 − E2 with integer invariants [54]

Ng
B = Ng

B−E1−E2
= −δg,0 , (5.50)

Ng
Ei

= Ng
B−Ei

= δg,0 .
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It is easy to derive the above expression from the definition of the integer invariants. To

see this note that the curves Ei and B − Ei are rigid and therefore the corresponding

moduli space is just a point. On the other hand the moduli space of B and B − E1 − E2

is C. Hence, since the genus zero integer invariant of a curve C with moduli space M
is (−1)dimMχ(M) therefore N0

B = N0
B−E1−E2

= −1 and N0
Ei

= N0
B−Ei

= 1. Thus the

instanton part of the free energy is given by

F =

∞∑

n=1

Qn
b − λ−n

1 − λ−n
2 −Qn

b λ
−n
1 −Qn

b λ
−n
2 +Qn

bλ
−n
1 λ−n

2

n(qn/2 − q−n/2)2
, (5.51)

where Qb = e−Tb , λi = eTEi and Tb, TEi are the area of curves B and Ei respectively.

The partition function Z = eF can be written easily using the multicovering structure

of the free energy and is given by

Z = Zpert

∞∏

k=0

(
1 − λ−1

1 Qbq
k+1
)k+1 (

1 − λ−1
2 Qbq

k+1
)k+1

(1 −Qbqk+1)
k+1 (

1 −Qbλ
−1
1 λ−1

2 qk+1
)k+1

, (5.52)

where

Zpert =

∞∏

k=0

(
1 − λ−1

1 qk+1
)k+1 (

1 − λ−1
2 qk+1

)k+1
, (5.53)

and gives the perturbative contribution to the prepotential in the 4D field theory limit

because in this limit β → 0 such that

Qb =

(
βΛ

2

)2

, λi = eβmi , q−β~ . (5.54)

The partition function of the pure 5D U(1) theory is recovered in the limit λi → ∞.

For the U(1) theory we are discussing we saw that the corresponding geometry is

simple enough to allow us to write down the partition function directly. However, for

U(N) with N > 1 the corresponding geometries are such that the partition functions can

not be derived so easily. For this reason we now derive the partition function using the

open-closed duality via geometric transition [54] since this method can be extended to the

case of geometries giving rise to U(N) theories with Nf = 2N . The geometry shown in

figure 34 has two exceptional curves E1,2 with normal bundle O(−1)⊕O(−1) and therefore

the geometry in the neighborhood of these curves in that of resolved conifold. Thus these

curves can be shrunk and deformed into two three cycles which are topologically S3. The

A-model partition function is then given by the partition function of U(N1)×U(N2) Chern-

Simons theory on the two three cycles modified by the holomorphic maps between the two

three cycles as shown in figure 34 below. The partition function in this case is given by

Z =

∫
eScs(A1)+Scs(A2)+O(r) . (5.55)

Here, A1,2 are the U(N1,2) gauge fields on the two three cycles respectively and O(r) is the

contribution from the annuli shown in figure 34 of length r,

eO(r) =
∑

R

e−r ℓR TrRU1 TrRU2 , (5.56)
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Figure 34: Transition from closed string geometry to open string geometry by a geometric tran-

sition.

where U1,2 is the holonomy of A1,2 around the two boundary components of the annuli.

Thus the partition function is given by

Z =
∑

R

e−r ℓR〈TrRU1〉〈TrRU2〉 , (5.57)

= (S−1)00(q, λ1) (S−1)00(q, λ2)
∑

R

e−r ℓR WR(q, λ1)WR(q, λ2) ,

where 〈TrRU1,2〉 = (S−1)0R(q, λ1,2) = (S−1)00WR(q, λ1,2) and

WR(q, λi) =
∏

(i,j)∈R

[j − i]λi

[h(i, j)]
, [x]λ = qx/2λ1/2 − q−x/2λ−1/2 , (5.58)

is the quantum dimension of the representation R with λi = qNi . Thus the partition

function is given by

Z = Zpert

∑

R

QℓRWR(q, λ1)WR(q, λ2) , (5.59)

= ZpertZinst

where Q = e−r and Zpert = (S−1)00(q, λ1)(S
−1)00(q, λ2) gives the perturbative contribution

to the prepotential in the field theory limit such that λi = eβmi . In terms of the 4D gauge

theory β → 0 and

Q
√
λ1λ2 =

(
βΛ

2

)2

, (5.60)

q = e−β~ ,

λi = eβmi .

The sum giving the partition function can be evaluated to get a product formula

Zpert =
∞∏

k=0

(
1 − λ−1

1 qk+1
)k+1 (

1 − λ−1
2 qk+1

)k+1
, (5.61)
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a) b)

R R

Figure 35: The web diagram of the 6-dimensional U(1) theory with two fundamental hypermul-

tiplets.

and

Zinst =
∑

R

QℓRWR(q, λ1)WR(q, λ2) , (5.62)

= exp



∑

n≥1

Qn

n
W (qn, λn

1 )W (qn, λn
2 )


 ,

=

∞∏

k=0

(
1 −Q

√
λ2
λ1
qk+1

)k+1 (
1 −Q

√
λ1
λ2
qk+1

)k+1

(
1 −Q

√
λ2λ1qk+1

)k+1
(
1 − Q√

λ2λ1
qk+1

)k+1
,

=
∞∏

k=0

(
1 − λ−1

1 Qbq
k+1
)k+1 (

1 − λ−1
2 Qbq

k+1
)k+1

(1 −Qbqk+1)
k+1 (

1 −Qbλ
−1
1 λ−1

2 qk+1
)k+1

,

where Qb = Q
√
λ1λ2 and the partition function of the pure 5D U(1) theory is recovered in

the limit

λi → ∞ , Qb = fixed . (5.63)

It is easy to see that the above partition function agrees with the one given by Nekrasov

and with the one given in eq. (5.52).

Partition function of the 6-dimensional theory. To discuss the six dimensional case

and the corresponding geometries we will have to make toric web diagrams periodic around

one extra direction, as discussed in section 3. Consider the case of O(−1) ⊕O(−1) → P1

blown up at two points, i.e. the geometry we considered in the previous section. In this

case we can glue the external lines to obtain the geometry shown in figure 35 below.

To obtain the partition function we divide the geometry in two parts as shown in

figure 35(b). Then the partition function is given by

Z =
∑

R

QℓR
b (−1)ℓRKR(Qm1 , Q1)KRt(Qm2 , Q1) , (5.64)
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where

KR(Qm, Q1) =
∑

R1,S

QℓS
1 Q

ℓR1
m (−1)ℓS+ℓR1C•St Rt

1
CR1 Rt S , (5.65)

= (−1)ℓRsR(q−ρ)
∑

S,R1

QℓS
1 Q

ℓR1
m (−1)ℓR1

+ℓS

∑

R3,R4

sS/R3
(q−ρ)sSt/R4

(q−µRt−ρ)sRt
1/R3

(q−ρ)sR1/R4
(q−µR−ρ) .

Summing over R1 we get

KR = (−1)ℓRsR(q−ρ)
∏

i,j

(1 −Qmq
−µR,i−ρi−ρj ) (5.66)

∑

S,R3,R4,R5

QℓS
1 Q

ℓR4
m (−1)ℓR4

+ℓSsS/R3
(q−ρ)sSt/R4

(q−µRt−ρ)sRt
3/R5

(−Qmq
−µR−ρ)sRt

4/Rt
5
(q−ρ) .

Simplifying the above expression by summing over R3,4 gives

KR = (−1)ℓRsR(q−ρ)
∏

i,j

(1 −Qmq
−µR,i−ρi−ρj ) (5.67)

∑

S,R5

QℓS
1 Q

ℓR5
m (−1)ℓS+ℓR5sS/Rt

5
(q−ρ, Qmq

µR+ρ)sSt/R5
(q−µRt−ρ, Qmq

−ρ) .

Using the identity eq. (5.28) we get

KR = (−1)ℓRsR(q−ρ)
∏

i,j

(1 −Qmq
−µR,i−ρi−ρj) (5.68)

∞∏

k=1

∏
i,j(1−Qk

ρQ
−1
m q−µRt,i−ρi−ρj)(1−Qk

ρq
−ρi+ρj)(1−Qk

ρq
µR,i+ρi−µRt,j−ρj)(1−Qk

ρQmq
µR,i+ρi+ρj)

(1 −Qk
ρ)

.

The above expression can be further simplified to7

KR = K•(−1)ℓRsR(q−ρ)
∏

(i,j)∈R

(1 −Qmq
i−j)

( ∞∏

k=1

(1 −Qk
ρQ

−1
m qj−i)(1 −Qk

ρQmq
i−j)

(1 −Qk
ρq

hR(i,j))(1 −Qk
ρq

−hR(i,j))

)
.

where K• is the perturbative contribution

K•(Qm) =

∞∏

r=0

(1 −Qmq
r+1)r+1

( ∞∏

k=1

(1 −Qk
ρQ

−1
m qr+1)r+1(1 −Qk

ρQmq
−r−1)r+1

(1 −Qk
ρ)(1 −Qk

ρq
r+1)2r+2

)
(5.69)

Thus the full partition function is given by

Z = K•(Qm1)K•(Qm2)
∑

R

QℓR
b

∏

(i,j)∈R

(1 −Qm1q
j−i)(1 −Qm2q

i−j)

(1 − qhR(i,j))(1 − q−hR(i,j))
(5.70)

∞∏

k=1

(1 −Qk
ρQ

−1
m1
qj−i)(1 −Qk

ρQm1q
i−j)(1 −Qk

ρQ
−1
m2
qi−j)(1 −Qk

ρQm2q
j−i)

(1 −Qk
ρq

hR(i,j))2(1 −Qk
ρq

−hR(i,j))2
.

The 5D limit is given by Q→ 0 and the 4D limit is given by β → 0.

7This simplification requires the identity:
P

i,j qµR,i+ρi+ρj = q
(1−q)2

+
P

(i,j)∈R qj−i .
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Figure 36: a) The web diagram of the 5-dimensional U(2) theory with four fundamental hyper-

multiplets, b) the corresponding open string geometry obtained by geometric transition.

5.2.2 N = 2

The Calabi-Yau geometry giving rise to this theory is shown in figure 36 below. The

partition function for this case was calculated in [54] and is given by

Z =
∑

R1,2,3,4

Qℓ1
B1
Qℓ3

B2
Qℓ2

F1
Qℓ4

F2
WR1R4(λ4, q)WR4R3(λ3, q)WR3R2(λ2, q)WR2R1(λ1, q) ,

where

QB1,2 = e−TB1,2 , QF1,2 = e−TF1,2 , λ1,2,3,4 = et1,2,3,4 . (5.71)

TBi and TFi are the lengths of the annuli shown in figure 36(b) and ta are the area of the

four exceptional curves and

WR1R2 =
∑

R

NR
R1R2

q
1
2
(κR−κR1

−κR2
)WR . (5.72)

The partition function can be written as Z = ZpertZinst where Zpert is the perturbative

contribution to the partition function and Zinst is the instanton contribution. From the

discussion of section 3 it follows that the instanton contribution arises from the terms

involving QB1,2 . In the following we will focus our attention on the instanton contribution

only.

To determine the partition function note that it can be written as

Z =
∑

R1,R3

Q
ℓR1
B1
Q

ℓR3
B2
GR1R3(QF1, λ1, λ2)GR1R2(QF2, λ4, λ3) , (5.73)

where

GR1R2(Q,λ1, λ2) =
∑

R

WR1R(q, λ1)WRR2(q, λ2)Q
ℓR . (5.74)
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As discussed in [54] before the Hopf link invariants WR1R2(λ, q) are given by Schur func-

tions, sR(x). Using the identity

∑

R

sR(x)sR(y) =
∏

i,j

(1 −Qxiyj)
−1 (5.75)

= Exp

( ∞∑

n=1

Qn

n
f(xn, yn)

)
, f(x, y) =

∑

i,j

xiyj .

we get

GR1R2(Q,λ1, λ2) = WR1(q, λ1)WR2(q, λ2)Exp

( ∞∑

n=1

Qn

n
FR1R2(qn, λn

1 , λ
n
2 )

)
, (5.76)

The function FR1R2 can be determined easily by expanding eq. (5.74) to first order in Q,

FR1R2 − F •,• =
√
λ1λ2fR1R2 −

√
λ2

λ1
fR2 −

√
λ1

λ2
fR1 (5.77)

Where the function fR and fR1R2 are given by

fR(q) =
∑

(i,j)∈R

qj−i, (5.78)

fR1R2(q) :=
∑

k

Ck(R1, R2)q
k = (q + q−1 − 2)fR1fR2 + fR1 + fR2 .

Using the above definitions in eq. (5.74) we get

GR1R2(Q,λ1, λ2) = G00(Q,λ1, λ2)

∏
k

(
1 − qk

√
λ1
λ2
Q
)Ck(R1,•)∏

k

(
1 − qk

√
λ2
λ1
Q
)Ck(R2,•)

∏
k

(
1 − qk

√
λ1λ2Q

)Ck(R1,R2)
.

The full partition function is given by

Z = Zpert

∑

R1,2

Qℓ1
B1
Qℓ2

B2
WR1(q, λ1)WR2(q, λ2)WR2(q, λ3)WR1(q, λ4)

∏
k

(
1−qk

√
λ1
λ2
QF1

)Ck(R1,•)(
1−qk

√
λ2
λ1
QF1

)Ck(R2,•)(
1−qk

√
λ3
λ4
QF2

)Ck(R2,•)(
1−qk

√
λ4
λ3
QF2

)Ck(R1,•)

∏
k

(
1 − qk

√
λ1λ2QF1

)Ck(R1,R2) (
1 − qk

√
λ3λ4QF2

)Ck(R1,R2)
,

(5.79)

Define the renormalized Kähler parameters Tb,f of the base and the fiber P1,

TB1 = Tb −
1

2
(t1 + t4) , (5.80)

TB2 = Tb −
1

2
(t3 + t4) ,

TF1 = Tf − 1

2
(t1 + t2) ,

TF2 = Tf − 1

2
(t3 + t4) .
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Figure 37: The web diagram of the 5-dimensional U(N) theory with 2N fundamental hypermul-

tiplets.

Then in terms of the renormalized parameters we get (Ck(R) = Ck(R, •))

Zinst =
∑

R1,2

Qℓ1+ℓ2
b Z

(0)
R1,R2

∏

k

(1−qkλ−1
1 )Ck(R1)(1−qkλ−1

1 Qf )Ck(R2)(1−q−kλ−1
2 )Ck(R2)

(1−qkλ−1
2 Qf )Ck(R1)(1−q−kλ−1

3 )Ck(R2)

(1−qkλ−1
3 Qf )Ck(R1)(1−qkλ−1

4 )Ck(R1)(1−qkλ−1
4 Qf )Ck(R2) .

(5.81)

Where

Z
(0)
R1R2

=
CR1(q)

2CR2(q)
2

∏
k(1 − qkQ)Ck(R1,R2)

. (5.82)

The renormalized parameters are define such that in the limit λi → ∞ we get the partition

function of pure 5D gauge theory, i.e. the A-model partition function of local P1 ×P1.

To obtain the partition function of the 4-dimensional gauge theory we have to take

the limit

Qf = e−2aβ , λa = e−βma , q = e−βǫ , β 7→ 0 . (5.83)

In this limit it is easy to show that eq. (5.82) agrees with the results of [5]. The case of

Nf = 0, 1 was discussed recently in [79].

U(N) with Nf = 2N . The Calabi-Yau geometry in this case is shown in figure 37

below. The partition function can be calculated using either the topological vertex or the

Chern-Simons theory. We just state the result which can also be obtained from the Weyl

symmetry present in the geometry and the result of the U(2) partition function calculated

before. In this case the partition function is given by

Z :=
∑

R1,2,...,N

Qℓ1
B1
Qℓ2

B2
· · ·QℓN

BN
KR1···RN

(λ1,...,N , QF1,...,FN
)KR1···RN

(λN+1,...,2N , QF1,...,FN
).

(5.84)
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where

KR1···RN
(λ1,...,N , QF1,...,FN

) =
∏

1≤i<j≤N

GRi,Rj(Qij , λi, λj) , (5.85)

where Qij =
∏j−1

k=i Qfk
. Define

Qij = QFij/
√
λiλj , (5.86)

QBi = Qb/
√
λiλN+i .

Then we get

Z =
∑

R1,...,N

Qℓ1+···+ℓN
b Z

(0)
R1,...,RN

N∏

i=1

∏

k

(
1 − qkλ−1

i

)Ck(Ri) (
1 − qkλ−1

i+N

)Ck(Ri)
(5.87)

×
∏

1≤i<j≤N

∏

k

(
1 − qkλ−1

i QFij

)Ck(Rj) (
1 − qkλ−1

j QFij

)Ck(Ri)

×
(
1 − qkλ−1

N+iQFij

)Ck(Rj) (
1 − qkλ−1

N+jQFij

)Ck(Ri)
.

In the limit λi → ∞ we get the partition function of the pure 5D SU(N) gauge theory with

zero Chern-Simons term.

6D case. In this case the partition function can be calculated from the geometry shown

in figure 38(a) below. To calculate the partition function we will slice the geometry in two

parts (shown in figure 38(b)) and after calculating the partition function of each part we

will glue them together. If we denote the partition function of the geometry in figure 38(b)

by KR1···RN
then the full partition function is given by

Z =
∑

R1,...,N

Ql1
B1

· · ·QlN
BN

KR1···RN
(QF1,2,...,N

, λ1,...,N , q)KR1···RN
(QF1,2,...,N

, λi+N , q) .(5.88)

In calculating KR1···RN
we will have to take into account the contributions from annuli

which start and end on the same three cycle and wind around the circle arbitrary number

of times. Also contribution from annuli which start and end on different three cycles after

winding around the circle arbitrary number of times have to be considered. It is easy to

see that

KR1···RN
=

N∑

i=1

∑

R
(i)
1,2,...

Q

P
k≥1 kl

R
(i)
k

ρ WQ
k R

(i)
k ⊗R

(i)
k ,Ri

×
∑

i<j,R
(ij)
0,1,2,...

Q

P
k≥0 kl

R
(ij)
k

τ Q

P
k≥0 l

R
(ij)
k

ij WQ
k R

(ij)
k ,Ri

WQ
k R

(ij)
k ,Rj

.

(5.89)

Using the above expression in eq. (5.88) we can evaluate the partition function as a series

in Qρ.
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R

RN

1

a) b)

Figure 38: a) The web diagram of the 6D U(N) theory with 2N hypermultiplets, b) the half of

the web diagram used to calculate the partition function.

6. Instanton moduli spaces and partition functions

The most direct connection between geometric engineering and the gauge theory perspec-

tive appears in 5 dimensional theories with geometry R4 ×S1, where we view R4 as space

and S1 as the Euclidean time with radius β. In particular consider M-theory on X×R4×S1

where S1 has radius β in M-theory units. Let TM
i denote the Kähler moduli of CY in M-

theory units. Assume X is such that it engineers an N = 1 supersymmetric U(N) gauge

theory in 5d. Moreover consider breaking U(N) → U(1)N by going to a generic point on

Coulomb branch given by Kähler moduli aM
i . The Yang-Mills coupling constant is

1

g2
YM

= TM
B , (6.1)

where TM
B is the Kähler moduli of the base measured in M-theory units. Instantons are

BPS particles of this theory and they can carry U(1) charges. The BPS mass of such an

instantons is given by

m = kTM
B + nia

M
i , (6.2)

where k denotes the instanton number and ni denotes the U(1) charges. Compactification

on a circle of radius β lead to computations of the form

Tr exp(−βH) , (6.3)

where for BPS states

βH = βm = β
(
kTM

B + nia
M
i

)
. (6.4)
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From the perspective of 4d type IIA string on CY, this can be viewed as computing the

partition function of topological string because the metric, or Kähler form, as measured in

type IIA strings and M-theory differ by

βkM = kII , (6.5)

thus βm = β(kTM
B +nia

M
i ) = kT II

B +nia
II
i . This explains the fact that from type II string

perspective the topological string partition function was related to Tr exp(−T ) where T

measures the size of the cycles in type IIA units. Thus topological string partition function

for type IIA strings can be viewed as an M-theory partition function on a circle, or a 5d

gauge theory BPS partition function on a circle. Thus the second quantized partition func-

tion of BPS states we have computed in the context of topological string should be related

to some suitable partition function of second quantized BPS states involving instantons

of the gauge theory. This then makes contact with the work of Nekrasov [5] where he

developed an instanton calculus precisely for such cases. The link between the topological

string computations and the 5d gauge theory computation of Nekrasov has been proven

in [72, 71]. Our main aim in reviewing aspects of it here is twofold: First we want to gener-

alize these to gauge theories in 5d involving adjoint fields. secondly, we wish to generalize

these to 6d gauge theories compactified on T2.

Before describing the calculations in detail we first make some general comments about

the meaning of the “instanton partition function”. In the conventional setting charge k

instanton effects are calculated in terms of a zero-dimensional (matrix) supersymmetric

sigma model with the k-instanton moduli space of U(N) Mk,N as target (see [58]). The

exact details will be somewhat different for the theory with an adjoint as opposed to funda-

mental hypermultiplets. The sigma models are coupled to various isometries of the target

space. Firstly, to the abelian subgroup U(1)N ⊂ U(N) of the global gauge group which

acts on Mk,N . This gives coupling which depend on N parameters which are identified

with the VEVs ai of the parent theory. These coupling imply that the integrals over Mk,N

localize over fixed points of global gauge transformations. In particular, the fixed-point set

consists of the moduli space of point-like instantons [59, 60]. This is still a complicated

space to integrate over. The additional insight of [57] was that if one, in addition, cou-

pled to isometries corresponding to the abelian parts of the Lorentz group, involving two

parameters ǫ1 and ǫ2,
8 then the fixed-point set becomes discrete. The instanton partition

function can then be expressed as a sum over these discrete points and each contribution

is a ratio of the usual fermionic and bosonic fluctuation determinants.

If we now lift the theory to five-dimensions compactified on a circle, instantons in four-

dimensions are now solitons in five-dimensions whose world-lines can wrap around the circle.

The instanton partition function now involves quantum mechanics on the instanton moduli

space and due to the couplings to the isometries defines an equivariant generalization of

an index on Mk,N . The localization techniques are still valid the only difference being that

the fermionic and bosonic determinants now include a product over all the Kaluza-Klein

modes of fluctuations.

8In the following we shall for the most part make the simplifying choice ǫ1 = −ǫ2 = ǫ.
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We will also be interested in F-theory compactifications on elliptic threefolds times a

T2. From the viewpoint of 6d theory, we now have a 1+1 dimensional sigma model from

T2 to the instanton moduli space. It is now clear that whatever index one is computing

will be replaced by the corresponding elliptic index, where the complex structure of T2

will enter the elliptic index. We will discuss this in more detail below in the context of our

main example which is the mass deformed (1, 1) supersymmetric theory in 6D compactified

on T2 (giving N = 2∗ in 4D). In this case the localization procedure naturally involves

replacing the weights of the circle actions xi by its elliptic generalization θ1(
β
2ixi|ρ).9

6.1 Calculation of 5D partition functions

In this section we use the instanton calculus to compute the mass deformed N = 2∗ BPS

partition function in 5D. As has been shown in [5] the relevant index computation involves

the χy genus of the instanton moduli space.

For a closed complex manifold M, its χy genus is defined as

χy(M) =
∑

p,q≥0

yp(−1)pdimHq(M,ΛpT ∗
M) =

∑

p≥0

ypχ(M,ΛpT ∗
M) (6.6)

=

∫

M

ch Λ−y(T
∗
M)Td(M) =

∫

M

d∏

j=1

(1 − ye−xj )
xj

1 − e−xj
,

where {x1, . . . , xd} denote the Chern roots of TM, the tangent bundle. If M has a torus

action with isolated fixed points {p1, . . . , pn} and weights {wi,1, . . . , wi,d} at pi then it

follows from localization theorem

χy(M) =

n∑

i=1

∏d
j=1(1 − ye−wi,j)

wi,j

1−e−wi,j

∏d
j=1wi,j

(6.7)

=
n∑

i=1

d∏

j=1

1 − ye−wi,j

1 − e−wi,j
.

For the case we are interested in, M = Mk,N , y = e−βm, and the fixed points and weights

at each fixed point of Mk,N under the U(1)N ×U(1)×U(1) action were calculated in [5, 75].

The group U(1)N ×U(1)×U(1) mentioned above is the Cartan of the gauge group and the

spacetime rotation group. The fixed points of Mk,N are in one to one correspondence with

the partitions of k into N colors i.e., the fixed points are labelled by N representations Rα

of U(∞) such that

k = ℓR1 + ℓR2 + · · · + ℓRN
. (6.8)

Let us denote the corresponding Young diagrams by µi (and the transpose diagram by µt,i)

then given a fixed points of Mk,N labelled by (µ1, . . . , µN ) the corresponding weights are

9The fact that this depends on only ρ rather than its conjugate is a reflection of the fact that only the

anti-holomorphic modes contribute: the ratio of determinants of the fermionic and bosonic holomorphic

modes cancel.
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given by [5, 73 – 75]

∑

i,j

ewi,j =
N∑

α,γ=1

eβ(aα−aγ)




∑

(i,j)∈Rα

qµα
i +µt,γ

j −i−j+1 +
∑

(i,j)∈Rγ

q−µγ
i +µt,α−i−j+1


 . (6.9)

For the case of N = 1 we see that the above expression simplifies to

∑

(i,j)∈R

(
qh(i,j) + q−h(i,j)

)
, h(i, j) = µi + µt

j − i− j + 1 (6.10)

Using the above weights for the N = 1 case in eq. (6.8) we get

∑

k

Qkχ(Mk,1) =
∑

k

Qk
∑

R,ℓR=k

∏

(i,j)∈R

(
1 − yqh(i,j)

) (
1 − yq−h(i,j)

)
(
1 − qh(i,j)

) (
1 − q−h(i,j)

) , (6.11)

=
∑

R

QℓR
∏

(i,j)∈R

(
1 − yqh(i,j)

) (
1 − yq−h(i,j)

)
(
1 − qh(i,j)

) (
1 − q−h(i,j)

) .

This agrees exactly with the eq. (5.10) which was calculated using the topological vertex

if we identify y = Qm.

For N > 1 using the weights given above in eq. (6.9) in eq. (6.8) we get

∑

k

Qkχ(Mk,N ) =
∑

R1,...,N

Q
PN

i=1 ℓRi

N∏

α,γ=1

∏

(i,j)∈Rα

(
1−yeβ(aα−aγ) qµα

i +µt,γ
j −i−j+1

)

(
1−eβ(aα−aγ)qµα

i +µt,γ
j −i−j+1

)

∏

(i,j)∈Rγ

(
1−yeβ(aα−aγ)q−µγ

i +µt,α−i−j+1
)

(
1−eβ(aα−aγ) q−µγ

i +µt,α−i−j+1
) ,

(6.12)

which also agrees with the U(2) case discussed in the last section for N = 2.

6.2 Calculation of 6D partition function

In this case, the instanton partition of the six-dimensional theory can be interpreted as the

generating functional for an elliptic genus of the instanton moduli space,

Z =
∑

k

Qkχ(Mk,N ) . (6.13)

The elliptic genus χ(M) is defined as the partition function in the Ramond-Ramond sector

of the N = 2 two-dimensional sigma-model with M as target on the torus T2 [80, 81]:

χ(M) = Tr
(
(−1)F yFLQL0

ρ Q̄ρ
L̄0e

PN
i=1 aiJi+ǫ1K1+ǫ2K2

)
, (6.14)

where

Qρ = e2πiρ , y := e−βm , (6.15)

F = FL + FR, the sum of the left and right fermion numbers. The remaining terms

correspond to coupling to abelian isometries of M. The charges Ji corresponding to the
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U(1)N ⊂ U(N) of the gauge group,10 while K1,2 are the charges corresponding to the

abelian subgroup U(1)2 ⊂ SU(2)L × SU(2)R of the Lorentz group of R4. Note that naively

Z vanishes if we include the right-moving fermionic zero mode on R4 which is always a

factor for Mk,N , and so this trace is meant with the zero mode deleted. This reflects the

same condition for BPS partition function, namely we only include the lowest component

for each BPS multiplet.

The simplest example is given by taking N = 1. The U(1) theory does not have smooth

instanton solutions. In fact one way to think about instantons in an abelian theory is to

turn on spacetime non-commutativity. In that case, there are instanton solutions whose

only moduli correspond to the positions of the individual instantons. A single instanton

has a moduli space R4 which represents its position in Euclidean spacetime. For charge k,

the moduli space is a smoothed version of the symmetric product

Mk,1 ∼ Symk
(
R4
)
. (6.16)

For the six-dimensional theory, we can work directly in terms of the symmetric product.

The elliptic genus for one instanton, for which M1,1 ≃ R4, can be written down

straightforwardly. Choosing ǫ1 = −ǫ2 = ǫ,

χ(M1,1, Qρ, y, q) =

∞∏

n=1

(
1 −Qn

ραq
) (

1 −Qn−1
ρ y−1q−1

) (
1 −Qn

ρy
−1q
) (

1 −Qn−1
ρ yq−1

)
(
1 −Qn−1

ρ q
)2 (

1 −Qn
ρq

−1
)2

=
θ1

(
β
2i(ǫ+m)

∣∣ρ
)
θ1

(
β
2i(ǫ−m)

∣∣ρ
)

θ2
1

(
β
2iǫ
∣∣ρ
) ,

(6.17)

where

y = e−βm , q = e−βǫ = e−λs . (6.18)

This expression as a function φ(ρ, z1, z2), y = e2πiz1 , q = e2πiz2 is a weak Jacobi form of

weight 0 and indices 2 and 0, for z1 and z2, respectively.

For higher instanton number we can apply the formula of [13] for the elliptic genus of

a symmetric product. If

χ(M) =
∑

n≥0,p1,p2,...

c(n, p1, p2, . . .)Q
n
ρy

p1
1 y

p2
2 · · · , (6.19)

then

∞∑

k=1

Qkχ(Symk(M)) =
∞∏

k=1,n=0

∏

p1,p2,...

1

(1 −QkQn
ρy

p1
1 y

p2
2 · · · )c(nk,p1,p2,...)

, (6.20)

where we have allowed for coupling to an arbitrary number of conserved quantities though

y1, y2, . . .. In the present case, we have coupling to two charges through α and q. The instan-

ton partition function is then equal to the generating function (6.20) with the c(n, p1, p2)

10Only SU(N) acts non-trivially on M so we can fix
PN

i=1 ai = 0.
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extracted from (6.19). The fact that the relevant moduli space is that of a genus 2 curve,

as we have found before, was already noted in [13] in the context of elliptic genus of sym-

metric products. The problem of interest there was related to computation of entropy of

5D black holes [14] where the relevant space is the moduli space of instantons on K3 or

T4, as opposed to the case of interest here which is R4.

In the last section we saw that localization allows us to write the χy genus of M as

a sum of contributions from the fixed points. The elliptic genus of M can similarly be

written as the sum over the fixed points with weights wi,j,

χ(M) =

n∑

i=1

d∏

j=1

(
1 − ye−wi,j

1 − e−wi,j

( ∞∏

k=1

(
1 −Qk

ρ y e
−wi,j

) (
1 −Qk

ρ y
−1 ewi,j

)
(
1 −Qk

ρe
−wi,j

) (
1 −Qk

ρ e
wi,j
)

))
. (6.21)

Let’s first consider the case of N = 1. In this the weights are give by eq. (6.10).

Substituting then in in the above equation we get

∑

k

Qkχ(Mk,1) =
∑

R

QℓR
∏

(i,j)∈R

(
1 − yqh(i,j)

) (
1 − yq−h(i,j)

)
(
1 − qh(i,j)

) (
1 − q−h(i,j)

)

∞∏

n=1

(
1 −Qn

ρyq
h(i,j)

) (
1 −Qn

ρy
−1q−h(i,j)

) (
1 −Qn

ρyq
−h(i,j)

) (
1 −Qn

rhoy
−1qh(i,j)

)
(
1 −Qn

ρq
h(i,j)

)2 (
1 −Qn

ρq
−h(i,j)

)2 .

This agrees with the topological vertex computation of the last section, eq. (5.35), once we

use the identification y = Qm. The above expression can also be written as

Z =
∑

R

QℓR
∏

(i,j)∈R

θ1
( β

2i(h(i, j)ǫ +m)
∣∣ρ
)
θ1
( β

2i(h(i, j)ǫ −m)
∣∣ρ
)

θ1
( β

2ih(i, j)ǫ
∣∣ρ
)2 . (6.22)

One can easily check by hand that the two expressions eq. (6.20) and eq. (6.22) agree for

the first few terms.

6.3 Extracting the curves from instantons

In this section, we show how the curves of our two six-dimensional theories compactified

on a torus can be extracted by using instantons. In a sense this is already done in the

previous section, when we showed that A-model topological string amplitudes agree with

the instanton calculus computations. Since one knows how to extract the mirror curve in

the A-model setup, this is a proof of how one can extract the curve from the instanton

calculus. However, one can also do this directly as was done in [57].

The central quantity is the instanton partition function which is a given by a sum over

instanton numbers of the form

Z =
∑

k

QkZk , Q = e2πiτ , (6.23)

where τ is the complexified coupling of the theory. The associated free energy has an expan-

sion which includes the prepotential F0 as well as a whole series of gravitational couplings:

Z = exp
(∑

Fgλ
2g−2
s

)
. (6.24)

The curve appears in the limit of λs → 0.
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6.3.1 The theory with an adjoint

From our discussion of the last section where we computed the instanton partition functions

from the topological vertex and the localization calculation (eq. (236)) we see that the

instanton partition function for the U(N) theory with an adjoint can be expressed as [57]

Z(ai) = exp



∑

ij

(
γǫ(ai − aj) − γǫ(ai − aj +m)

)



×
∑

R1,...,RN

QℓR1
+···+ℓRN

∏

(i,p)6=(j,q)

σ(ai−aj+ǫ(µ
i
p−µj

q+q−p))σ(ai−aj+ǫ(q−p)+m)

σ(ai−aj+ǫ(q−p))σ(ai−aj+ǫ(µi
p−µj

q+q−p)+m)
.

(6.25)

The sum is over colored partitions of k, the instanton charge, as in (6.8). This is a partition

of k into N Young tableau {R1, . . . , RN} with a total of k boxes described by the data

µi
1 ≥ µi

2 ≥ · · · ≥ µi
ni

with

ni∑

p=1

µi
p = ℓRi ,

N∑

i=1

ℓRi = N , (6.26)

for i = 1, . . . , N . The instanton partition function given above although looks different but

is exactly the equal to the one calculated in the last section (for the case of U(1) and U(2))

if we use the following two identities [72],

∞∏

i,j=1

σ(µi − µj + j − i)

σ(j − i)
=

∏

(i,j)∈R

1

σ2(h(i, j))
, (6.27)

∏

α6=γ

∞∏

i,j=1

σ(aαγ + ǫ(µα
i − µγ

j + j − i))

σ(aαγ + ǫ(j − i))
=
∏

k

1

(σ(a12 + ǫk))2Ck(R1,Rt
2)
, α, γ = 1, 2.

The integers Ck(R1, R2) were defined in section 4,
∑

k Ck(R1, R2)q
k = fR1,Rt

2
.

For the four, five and six-dimensional theory,

σ4D(x) = x , σ5D(x) = sinh

(
βx

2

)
, σ6D(x) = θ1

(
βx

2i

∣∣ρ
)

(6.28)

respectively. In addition, the kernel γ~(x) is defined by the finite difference equation

γǫ(x+ ǫ) + γǫ(x− ǫ) − 2γǫ(x) = log σ(x) . (6.29)

In the four-dimensional case, the partition function can be simply written in terms of

a sum over certain “paths” f(x) which are associated to the colored partitions. In concrete

terms, it is simpler to work on terms of the second derivative of f ′′(x):

f ′′(x) = 2

N∑

i=1




ni∑

p=1

(
δ
(
x− ai − ǫ

(
µi

p − p+ 1
))

− δ
(
x− ai − ǫ

(
µi

p − p
)))

+ δ (x− ǫni)


 .

(6.30)
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In the limit ǫ→ 0, f ′′(x) becomes a positive density with N intervals of support along N

open contours Ci with end-points

Ci = [ri, si] i = 1, . . . , N (6.31)

located in the vicinity of ai. This picture naturally extends by continuity to the six-

dimensional theory where now f ′′(x) is defined as a density in T̃2 with support along the

N contours (6.31).

The following identities arise from (6.30). First of all, one has the normalization

condition ∫

Ci

dx f ′′(x) = 2 . (6.32)

Secondly, the VEVs are recovered via

ai =
1

2

∫

Ci

dxx f ′′(x) , (6.33)

while the instanton charge is

k = − 1

2ǫ2

N∑

i=1

a2
i +

1

4ǫ2

∫

C
dxx2 f ′′(x) , (6.34)

where the union of all the contours is

C =
N⋃

i=1

Ci . (6.35)

In the ǫ → 0 limit, Z is dominated by a saddle-point determined by minimizing the

functional E [f ′′]

E [f ′′] = −1

4

∫

C
dx dy f ′′(x)f ′′(y)

(
γ0(x− y) − 1

2
γ0(x− y +m) − 1

2
γ0(x− y −m)

)

− iπτ

2

∫

C
dxx2 f ′′(x) +

N∑

i=1

λi

(
ai −

1

2

∫

Ci

dxx f ′′(x)

)
.

(6.36)

in which case

Z ∼ exp
(
− ǫ−2E

[
f ′′
] )

. (6.37)

In the above we, have included Lagrange multipliers λi to enforce the fact that the ai are

fixed. The kernel γ0(x) is the first term in the small ǫ expansion

γǫ(x) =

∞∑

g=0

γg(x)ǫ
2g−2 . (6.38)

It follows from (6.29) that

γ′′0 (x) = log σ(x) . (6.39)
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We can now calculate Z in this limit by finding the saddle-point. In fact rather than

calculate Z we shall see that the Seiberg-Witten curve arises in the description of the

critical density f ′′(x). To start with, the saddle-point equation is, for x ∈ Ci,

∫

C
dy f ′′(y)

(
γ0(x− y) − 1

2
γ0(x− y +m) − 1

2
γ0(x− y −m)

)
+ iπτx2 + λix = 0 . (6.40)

In order to solve this equation, it is convenient to introduce a resolvent

ω̃(x) =

∫

C
dy f ′′(y) ∂x log θ1

(
β

2i
(x− y)

∣∣ρ
)
. (6.41)

This is a multi-valued analytic function on T̃2, since it picks up an additive piece under

continuation around the B-cycle,

ω̃(x+ 2πi/β) = ω̃(x) , ω̃(x+ 2πiρ/β) = ω̃(x) − 2β−1 , (6.42)

with N branch cuts Ci. As usual with a resolvent, the discontinuity across a cut is propor-

tional to the density:

ω̃(x+ ǫ) − ω̃(x− ǫ) = 2πif ′′(x) , x ∈ C , (6.43)

where ǫ is a suitable infinitesimal chosen so that x± ǫ lie infinitesimally above and below

the cut at x. The third derivative of (6.40) with respect to x can then be written

ω̃(x+ ǫ) + ω̃(x− ǫ) − ω̃(x+m) − ω̃(x−m) = 0 , x ∈ C . (6.44)

This equation is identical the equation for the resolvent in the matrix model (2.23), except

that there is no potential on the right-hand side. However, the similarity suggests that we

define the function

G̃(x) = ω̃
(
x+

m

2

)
− ω̃

(
x− m

2

)
, (6.45)

to match (2.24). This function is now an analytic function on T̃2 withN pairs of branch cuts

C±
i = Ci ±

m

2
. (6.46)

The equation (6.44) then becomes a gluing condition

G̃
(
x+

m

2
± ǫ
)

= G̃
(
x− m

2
∓ ǫ
)

x ∈ C . (6.47)

Pictorially, the top/bottom of C+
i is glued to the bottom/top of C−

i . So G̃ is single-valued

on a Riemann surface of genus N + 1 just as in the matrix model.

We now prove that this curve is the Seiberg-Witten curve Σ. In order to do this, we

prove that the period matrix has the form (2.40). This itself follows from the existence of

the multi-valued function z with the monodromies (2.42). In the present context, we will

identify

z(P ) =
1

4πi

∫ P

P0

G̃(x)dx . (6.48)
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It follows from (6.43) that
∮

Aj

dz =
1

4πi

∫

Cj

dx f ′′(x) = 1 , (6.49)

where Aj is a cycle encircling the top cut C+
j as in figure 2. Now we consider the integral

of dz over the conjugate cycle Bj which goes from a point on the lower cut x − m
2 ∈ C−

j

to the point x+ m
2 on the upper cut C+

j . For x ∈ Cj,

∮

Bj

dz =

∫ x+ im
2

x− im
2

G̃(x′)dx′

=
1

2πi

∫

C
dy f ′′(y)

(
γ′′0 (x− y) − 1

2
γ′′0 (x− y +m) − 1

2
γ′′0 (x− y −m)

)
= τ

(6.50)

independent of x, where the last equality follows from taking the second derivative of the

saddle-point equation (6.40) for x ∈ Cj and using the relation (6.39).

From (6.49), it follows that dz =
∑N

i=1 ωi and therefore that the first N rows and

columns of the period matrix satisfy11

N∑

j=1

Πij = τ ∀i = 1, . . . , N . (6.51)

These are precisely the conditions on the period matrix (2.40). We can view these N

equations as N conditions on the moduli {ri, si} (the ends of the contours Ci). However,

there are N additional conditions that arise from the constraints

aj =
1

2

∫

Cj

dxxf ′′(x) =

∮

Aj

x dz . (6.52)

We can therefore think of the aj as the moduli of the curve Σ and notice that x dz is the

Seiberg-Witten differential.

So we have shown that the Seiberg-Witten geometry that we engineered out of the

matrix model in section 2 also describes the ǫ→ 0 limit of the instanton partition function.

6.3.2 The theory with fundamentals

In this section, we follow the same procedure using instantons to extract the Seiberg-

Witten curve for the six-dimensional N = (1, 0) theory with fundamental hypermultiplets

compactified on the torus T2.

The instanton partition function with Nf fundamental hypermultiplets is [5],

Z(ai) = exp



∑

ij

γǫ(ai − aj) +
∑

if

γǫ(ai −mf )




×
∑

R1,...,RN

QℓR1
+···+ℓRN

∏

(i,p)6=(j,q)

σ
(
ai−aj +ǫ

(
µi

p−µj
q+q−p

))

σ (ai − aj + ǫ(q − p))

∏

ipqf

σ
(
ai−mf +ǫ(µi

p+q−p)
)

σ (ai −mf + ǫ(q − p))
.

(6.53)

11In principal, one could have dz =
PN

i=1 ωi + λωN+1, for arbitrary λ. The only effect of this is to

re-define the coupling τ and so we choose λ = 0.
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In the last section we calculated this partition function (eq. (222) and eq. (223)) using the

topological vertex formalism and the Chern-Simons theory. In order to take the ǫ→ 0, we

follow exactly the same steps as for the adjoint theory. We assume that in the limit, f ′′(x) is

a density withN intervals of support along the contours (6.31) in T̃2. The conditions (6.32)-

(6.34) continue to hold. The functional to be extremized, replacing (6.36), is

E [f ′′] = −1

4

∫

C
dx dy f ′′(x)f ′′(y)γ0(x− y) +

1

2

Nf∑

f=1

∫

C
dx f ′′(x)γ0(x−mf )

− iπτ

2

∫

C
dxx2 f ′′(x) +

N∑

i=1

λi

(
ai −

1

2

∫

Ci

dxx f ′′(x)

)
.

(6.54)

This yields the saddle-point equation

∫

C
dy f ′′(y)γ0(x− y) −

Nf∑

f=1

γ0(x−mf ) + iπτx2 + λix = 0 x ∈ Ci . (6.55)

As in the N = 2∗ case, it is convenient to introduce a resolvent defined by

ω̃(x) =

∫

C
dy f ′′(y) ∂x log θ1

(
β

2i
(x− y)

∣∣ρ
)
−

Nf∑

f=1

∂x log θ1

(
β

2i
(x−mf )

∣∣ρ
)
, (6.56)

in which case the third derivative of the saddle-point equation has the form

ω̃(x+ ǫ) + ω̃(x− ǫ) = 0 , x ∈ C . (6.57)

Notice that the resolvent (6.56) is only well-defined on the torus T̃2 if Nf = 2N , otherwise

it picks up an additive ambiguity around the B-cycle of the T̃2 torus. This is presumably

related to the anomaly of the six-dimensional theory unless Nf = 2N .

The normalization condition (6.32) requires

∮

Aj

ω̃(x)dx = −2πi

∫

Cj

f ′′(x)dx = −4πi , (6.58)

where Aj is a cycle that encircles the jth cut, as illustrated in figure 39. In addition, for

xj ∈ Cj consider the integral

∫ xj+1

xj

ω̃(x)dx =

∫

C
dy f ′′(y)

(
log θ1

(
β

2i
(xj+1 − y)

∣∣ρ
)
− log θ1

(
β

2i
(xj − y)

∣∣ρ
))

= 0 ,

(6.59)

by the second derivative of (6.55).

The solution of these conditions naturally leads to a curve which is the double cover

of the torus T̃2 for which the Ci are N square-root branch cuts joining the 2 sheets. This

geometry is illustrated in figure 40. There is a natural involution which exchanges the two

sheets. In particular, we can trivially solve (6.57) if ω̃(x) is a meromorphic function which
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Figure 39: The cut T̃2 on which the resolvent ω̃(x) is defined. The contours Aj , j = 1, . . . , N

encircle the jth cut, while the contours Bj , j = 1, . . . , N −1 join the jth and j+1th cuts and return

on the lower sheet.

Figure 40: The solution involves a double cover of the T̃2 torus joined by N branch cuts to create

a surface of genus N + 1.

is odd under the involution and which has, in view of (6.56), simple poles at x = mf of

the form

ω̃(x) = ∓ 1

x−mf
+ O(1) (6.60)

on the top and bottom sheets, respectively. So ω̃(x)dx is a 1-form on Σ whose only singular-

ities are simple poles at mf , with residues ∓2πi, on the bottom and top sheet, respectively,
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and whose integrals around the cycles Aj , j = 1, . . . , N and Bj , j = 1, . . . , N − 1 are

∮

Aj

ω̃(x)dx = −4πi ,

∮

Bj

ω̃(x)dx = 0 , (6.61)

where Bj is the cycle illustrated in figure 39 and the latter integral follows from (6.59).

Since the contour ∪N
j=1Aj can be pulled off the back of the top sheet, at the expense

of picking up residues at the simple poles x = mf , we have

−4πiN =

N∑

j=1

∮

Aj

ω̃(x)dx = −
Nf∑

f=1

∮

mf

ω̃(x)dx = −2πiNf , (6.62)

by (6.60). Hence, for consistency we find

Nf = 2N , (6.63)

as we noted previously.

We claim that the unique solution to these conditions is

ω̃(x)dx = −2d log t , (6.64)

where t is the function

t =
P (x)√
Q(x)

+

√
P (x)2

Q(x)
− c (6.65)

with

P (x) =

N∏

i=1

θ1

(
β

2i
(x− ζi)

∣∣ρ
)
, Q(x) =

2N∏

f=1

θ1

(
β

2i
(x−mf )

∣∣ρ
)
. (6.66)

Hence,

ω̃(x) = −2

y

(
P ′(x) − P (x)Q′(x)

2Q(x)

)
, (6.67)

where

y2 = P (x)2 − cQ(x) . (6.68)

Notice that (6.68) is precisely the curve we found from the web diagram in (3.26). Notice

that we must also choose our x-origin so that

N∑

i=1

ζi =

2N∑

f=1

mf (6.69)

in order that ω̃(x) is valued on T̃2. From this solution, the density f ′′(x) is determined

by (6.43) once the cuts Cj are identified and where c a constant which is fixed in terms of

the coupling constant τ by substituting f ′′(x) in the second derivative of the saddle-point

equation (6.55). The cuts are identified as follows. In the limit of weak coupling c→ 0 and

the roots of y = 0 come in pairs on T̃2 located in the vicinity of each x = ζj. The roots

near ζj are the ends of the cut Cj.
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The geometry (3.26), (6.68), is the Seiberg-Witten curve of the U(N) six-dimensional

N = (1, 0) theory with Nf = 2N hypermultiplets. The ζj are moduli which are determined

in terms of the aj ’s by the conditions (6.33)

aj =
1

2

∫

Cj

xf ′′(x) dx = − 1

4πi

∮

Aj

xω̃(x)dx =
1

2πi

∮

Aj

x
dt

t
, (6.70)

from which we deduce that λ = xdt/(2πit) is the Seiberg-Witten differential.

Notice that the resulting curve Σ is embedded holomorphically in T3 × R defined by

the coordinates (x, z = 1
2πi log t). In the M-theory picture, x and z are identified with the

spacetime coordinates as in (2.57) and the M5-brane is wrapped on the curve.

7. 6D SYM and the 5-brane

We have seen that 6d (1, 1) supersymmetric gauge theory compactified on T2 and mass

deformed by the mass parameter m has an interesting moduli space. The moduli space is

three dimensional, given by the complex structure of T2, ρ, the Kähler class of T2, τ , and

the mass parameter m. The two natural SL(2,Z) symmetries of τ, ρ are combined to an

Sp(4,Z) symmetry when m 6= 0. Note that this is a mass deformed NS 5 brane of type

IIB compactified on T2. By a T-duality on one of the circles of T2 this can be viewed as

NS5-brane of type IIA compactified on T2 with complex structure τ and Kähler structure

ρ. Or, lifted up to M-theory, this can be viewed as a mass deformed M5 brane wrapped

on a T2. The dual description we have found can also be given an M5 brane description:

namely, we have given the dual description as an M5 brane wrapped on a genus 2 curve

embedded in T4, where the τ and ρ are both complex moduli of this genus 2 curve. This

is an amusing duality involving M5 brane where Kähler and complex structure on one side

are mapped to complex parameters on the other side.

It is also noteworthy that we have found a triality symmetry between
(
τ̂ , ρ̂, βm

2πi

)
=

(
τ − βm

2πi , ρ−
βm
2πi ,

βm
2πi

)
. The interpretation of this triality symmetry for the M5 brane

theory wrapped on a T2 would be interesting to understand directly.
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